Loading…

Dynamic upregulation of the rate-limiting enzyme for valerolactam biosynthesis in Corynebacterium glutamicum

Valerolactam is a monomer used to manufacture high-value nylon-5 and nylon-6,5. However, the biological production of valerolactam has been limited by the inadequate efficiency of enzymes to cyclize 5-aminovaleric acid to produce valerolactam. In this study, we engineered Corynebacterium glutamicum...

Full description

Saved in:
Bibliographic Details
Published in:Metabolic engineering 2023-05, Vol.77, p.89-99
Main Authors: Zhao, Xixi, Wu, Yanling, Feng, Tingye, Shen, Junfeng, Lu, Huan, Zhang, Yunfeng, Chou, Howard H., Luo, Xiaozhou, Keasling, Jay D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c404t-7432e84a76d3ac51cc85985d03622d6440d51a181c76ba26566f92a29795b05e3
cites cdi_FETCH-LOGICAL-c404t-7432e84a76d3ac51cc85985d03622d6440d51a181c76ba26566f92a29795b05e3
container_end_page 99
container_issue
container_start_page 89
container_title Metabolic engineering
container_volume 77
creator Zhao, Xixi
Wu, Yanling
Feng, Tingye
Shen, Junfeng
Lu, Huan
Zhang, Yunfeng
Chou, Howard H.
Luo, Xiaozhou
Keasling, Jay D.
description Valerolactam is a monomer used to manufacture high-value nylon-5 and nylon-6,5. However, the biological production of valerolactam has been limited by the inadequate efficiency of enzymes to cyclize 5-aminovaleric acid to produce valerolactam. In this study, we engineered Corynebacterium glutamicum with a valerolactam biosynthetic pathway consisting of DavAB from Pseudomonas putida to convert L-lysine to 5-aminovaleric acid and β-alanine CoA transferase (Act) from Clostridium propionicum to produce valerolactam from 5-aminovaleric acid. Most of the L-lysine was converted into 5-aminovaleric acid, but promoter optimization and increasing the copy number of Act were insufficient to significantly improve the titer of valerolactam. To eliminate the bottleneck at Act, we designed a dynamic upregulation system (a positive feedback loop based on the valerolactam biosensor ChnR/Pb). We used laboratory evolution to engineer ChnR/Pb to have higher sensitivity and a higher dynamic output range, and the engineered ChnR-B1/Pb-E1 system was used to overexpress the rate-limiting enzymes (Act/ORF26/CaiC) that cyclize 5-aminovaleric acid into valerolactam. In glucose fed-batch culture, we obtained 12.33 g/L valerolactam from the dynamic upregulation of Act, 11.88 g/L using ORF26, and 12.15 g/L using CaiC. Our engineered biosensor (ChnR-B1/Pb-E1 system) was also sensitive to 0.01–100 mM caprolactam, which suggests that this dynamic upregulation system can be used to enhance caprolactam biosynthesis in the future. •Design of a dynamic upregulation system for the rate-limiting enzymes in the valerolactam biosynthetic pathway.•Laboratory evolution to engineer ChnR/Pb to have higher sensitivity and a higher dynamic output range.•The highest titer of Valerolactam reached 12.33 g/L in a 1.2 L fermenter.
doi_str_mv 10.1016/j.ymben.2023.02.005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2792901208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1096717623000253</els_id><sourcerecordid>2792901208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-7432e84a76d3ac51cc85985d03622d6440d51a181c76ba26566f92a29795b05e3</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi1ERUvhFyAhH7kk-CN24gMHtOVLqtRLOVuOM1m88sdiO5XSX0-WLT1ympHmmXk1D0LvKGkpofLjoV3DCLFlhPGWsJYQ8QJdUaJk09Ohe_nc9_ISvS7lQAilQtFX6JJLxflA1RXyN2s0wVm8HDPsF2-qSxGnGddfgLOp0HgXXHVxjyE-rgHwnDJ-MB5y8sZWE_DoUlnjxhdXsIt4l_IaYdyGkN0S8N4v9RSxhDfoYja-wNuneo1-fv1yv_ve3N59-7H7fNvYjnS16TvOYOhMLydurKDWDkINYiJcMjbJriOToIYO1PZyNEwKKWfFDFO9EiMRwK_Rh_PdY06_FyhVB1cseG8ipKVo1iumCGVk2FB-Rm1OpWSY9TG7YPKqKdEnzfqg_2rWJ82aML1p3rbePwUsY4Dpeeef1w34dAZge_PBQdbFOogWJpfBVj0l99-APyRQkNY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792901208</pqid></control><display><type>article</type><title>Dynamic upregulation of the rate-limiting enzyme for valerolactam biosynthesis in Corynebacterium glutamicum</title><source>Elsevier</source><creator>Zhao, Xixi ; Wu, Yanling ; Feng, Tingye ; Shen, Junfeng ; Lu, Huan ; Zhang, Yunfeng ; Chou, Howard H. ; Luo, Xiaozhou ; Keasling, Jay D.</creator><creatorcontrib>Zhao, Xixi ; Wu, Yanling ; Feng, Tingye ; Shen, Junfeng ; Lu, Huan ; Zhang, Yunfeng ; Chou, Howard H. ; Luo, Xiaozhou ; Keasling, Jay D.</creatorcontrib><description>Valerolactam is a monomer used to manufacture high-value nylon-5 and nylon-6,5. However, the biological production of valerolactam has been limited by the inadequate efficiency of enzymes to cyclize 5-aminovaleric acid to produce valerolactam. In this study, we engineered Corynebacterium glutamicum with a valerolactam biosynthetic pathway consisting of DavAB from Pseudomonas putida to convert L-lysine to 5-aminovaleric acid and β-alanine CoA transferase (Act) from Clostridium propionicum to produce valerolactam from 5-aminovaleric acid. Most of the L-lysine was converted into 5-aminovaleric acid, but promoter optimization and increasing the copy number of Act were insufficient to significantly improve the titer of valerolactam. To eliminate the bottleneck at Act, we designed a dynamic upregulation system (a positive feedback loop based on the valerolactam biosensor ChnR/Pb). We used laboratory evolution to engineer ChnR/Pb to have higher sensitivity and a higher dynamic output range, and the engineered ChnR-B1/Pb-E1 system was used to overexpress the rate-limiting enzymes (Act/ORF26/CaiC) that cyclize 5-aminovaleric acid into valerolactam. In glucose fed-batch culture, we obtained 12.33 g/L valerolactam from the dynamic upregulation of Act, 11.88 g/L using ORF26, and 12.15 g/L using CaiC. Our engineered biosensor (ChnR-B1/Pb-E1 system) was also sensitive to 0.01–100 mM caprolactam, which suggests that this dynamic upregulation system can be used to enhance caprolactam biosynthesis in the future. •Design of a dynamic upregulation system for the rate-limiting enzymes in the valerolactam biosynthetic pathway.•Laboratory evolution to engineer ChnR/Pb to have higher sensitivity and a higher dynamic output range.•The highest titer of Valerolactam reached 12.33 g/L in a 1.2 L fermenter.</description><identifier>ISSN: 1096-7176</identifier><identifier>EISSN: 1096-7184</identifier><identifier>DOI: 10.1016/j.ymben.2023.02.005</identifier><identifier>PMID: 36933819</identifier><language>eng</language><publisher>Belgium: Elsevier Inc</publisher><subject>Biosensor engineering ; Caprolactam - metabolism ; Corynebacterium glutamicum ; Corynebacterium glutamicum - metabolism ; Dynamic regulation ; Fermentation ; Lead - metabolism ; Lysine ; Metabolic Engineering ; Up-Regulation ; Valerolactam</subject><ispartof>Metabolic engineering, 2023-05, Vol.77, p.89-99</ispartof><rights>2023 International Metabolic Engineering Society</rights><rights>Copyright © 2023 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-7432e84a76d3ac51cc85985d03622d6440d51a181c76ba26566f92a29795b05e3</citedby><cites>FETCH-LOGICAL-c404t-7432e84a76d3ac51cc85985d03622d6440d51a181c76ba26566f92a29795b05e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36933819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Xixi</creatorcontrib><creatorcontrib>Wu, Yanling</creatorcontrib><creatorcontrib>Feng, Tingye</creatorcontrib><creatorcontrib>Shen, Junfeng</creatorcontrib><creatorcontrib>Lu, Huan</creatorcontrib><creatorcontrib>Zhang, Yunfeng</creatorcontrib><creatorcontrib>Chou, Howard H.</creatorcontrib><creatorcontrib>Luo, Xiaozhou</creatorcontrib><creatorcontrib>Keasling, Jay D.</creatorcontrib><title>Dynamic upregulation of the rate-limiting enzyme for valerolactam biosynthesis in Corynebacterium glutamicum</title><title>Metabolic engineering</title><addtitle>Metab Eng</addtitle><description>Valerolactam is a monomer used to manufacture high-value nylon-5 and nylon-6,5. However, the biological production of valerolactam has been limited by the inadequate efficiency of enzymes to cyclize 5-aminovaleric acid to produce valerolactam. In this study, we engineered Corynebacterium glutamicum with a valerolactam biosynthetic pathway consisting of DavAB from Pseudomonas putida to convert L-lysine to 5-aminovaleric acid and β-alanine CoA transferase (Act) from Clostridium propionicum to produce valerolactam from 5-aminovaleric acid. Most of the L-lysine was converted into 5-aminovaleric acid, but promoter optimization and increasing the copy number of Act were insufficient to significantly improve the titer of valerolactam. To eliminate the bottleneck at Act, we designed a dynamic upregulation system (a positive feedback loop based on the valerolactam biosensor ChnR/Pb). We used laboratory evolution to engineer ChnR/Pb to have higher sensitivity and a higher dynamic output range, and the engineered ChnR-B1/Pb-E1 system was used to overexpress the rate-limiting enzymes (Act/ORF26/CaiC) that cyclize 5-aminovaleric acid into valerolactam. In glucose fed-batch culture, we obtained 12.33 g/L valerolactam from the dynamic upregulation of Act, 11.88 g/L using ORF26, and 12.15 g/L using CaiC. Our engineered biosensor (ChnR-B1/Pb-E1 system) was also sensitive to 0.01–100 mM caprolactam, which suggests that this dynamic upregulation system can be used to enhance caprolactam biosynthesis in the future. •Design of a dynamic upregulation system for the rate-limiting enzymes in the valerolactam biosynthetic pathway.•Laboratory evolution to engineer ChnR/Pb to have higher sensitivity and a higher dynamic output range.•The highest titer of Valerolactam reached 12.33 g/L in a 1.2 L fermenter.</description><subject>Biosensor engineering</subject><subject>Caprolactam - metabolism</subject><subject>Corynebacterium glutamicum</subject><subject>Corynebacterium glutamicum - metabolism</subject><subject>Dynamic regulation</subject><subject>Fermentation</subject><subject>Lead - metabolism</subject><subject>Lysine</subject><subject>Metabolic Engineering</subject><subject>Up-Regulation</subject><subject>Valerolactam</subject><issn>1096-7176</issn><issn>1096-7184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1v1DAQhi1ERUvhFyAhH7kk-CN24gMHtOVLqtRLOVuOM1m88sdiO5XSX0-WLT1ympHmmXk1D0LvKGkpofLjoV3DCLFlhPGWsJYQ8QJdUaJk09Ohe_nc9_ISvS7lQAilQtFX6JJLxflA1RXyN2s0wVm8HDPsF2-qSxGnGddfgLOp0HgXXHVxjyE-rgHwnDJ-MB5y8sZWE_DoUlnjxhdXsIt4l_IaYdyGkN0S8N4v9RSxhDfoYja-wNuneo1-fv1yv_ve3N59-7H7fNvYjnS16TvOYOhMLydurKDWDkINYiJcMjbJriOToIYO1PZyNEwKKWfFDFO9EiMRwK_Rh_PdY06_FyhVB1cseG8ipKVo1iumCGVk2FB-Rm1OpWSY9TG7YPKqKdEnzfqg_2rWJ82aML1p3rbePwUsY4Dpeeef1w34dAZge_PBQdbFOogWJpfBVj0l99-APyRQkNY</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Zhao, Xixi</creator><creator>Wu, Yanling</creator><creator>Feng, Tingye</creator><creator>Shen, Junfeng</creator><creator>Lu, Huan</creator><creator>Zhang, Yunfeng</creator><creator>Chou, Howard H.</creator><creator>Luo, Xiaozhou</creator><creator>Keasling, Jay D.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202305</creationdate><title>Dynamic upregulation of the rate-limiting enzyme for valerolactam biosynthesis in Corynebacterium glutamicum</title><author>Zhao, Xixi ; Wu, Yanling ; Feng, Tingye ; Shen, Junfeng ; Lu, Huan ; Zhang, Yunfeng ; Chou, Howard H. ; Luo, Xiaozhou ; Keasling, Jay D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-7432e84a76d3ac51cc85985d03622d6440d51a181c76ba26566f92a29795b05e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biosensor engineering</topic><topic>Caprolactam - metabolism</topic><topic>Corynebacterium glutamicum</topic><topic>Corynebacterium glutamicum - metabolism</topic><topic>Dynamic regulation</topic><topic>Fermentation</topic><topic>Lead - metabolism</topic><topic>Lysine</topic><topic>Metabolic Engineering</topic><topic>Up-Regulation</topic><topic>Valerolactam</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Xixi</creatorcontrib><creatorcontrib>Wu, Yanling</creatorcontrib><creatorcontrib>Feng, Tingye</creatorcontrib><creatorcontrib>Shen, Junfeng</creatorcontrib><creatorcontrib>Lu, Huan</creatorcontrib><creatorcontrib>Zhang, Yunfeng</creatorcontrib><creatorcontrib>Chou, Howard H.</creatorcontrib><creatorcontrib>Luo, Xiaozhou</creatorcontrib><creatorcontrib>Keasling, Jay D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Metabolic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Xixi</au><au>Wu, Yanling</au><au>Feng, Tingye</au><au>Shen, Junfeng</au><au>Lu, Huan</au><au>Zhang, Yunfeng</au><au>Chou, Howard H.</au><au>Luo, Xiaozhou</au><au>Keasling, Jay D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic upregulation of the rate-limiting enzyme for valerolactam biosynthesis in Corynebacterium glutamicum</atitle><jtitle>Metabolic engineering</jtitle><addtitle>Metab Eng</addtitle><date>2023-05</date><risdate>2023</risdate><volume>77</volume><spage>89</spage><epage>99</epage><pages>89-99</pages><issn>1096-7176</issn><eissn>1096-7184</eissn><abstract>Valerolactam is a monomer used to manufacture high-value nylon-5 and nylon-6,5. However, the biological production of valerolactam has been limited by the inadequate efficiency of enzymes to cyclize 5-aminovaleric acid to produce valerolactam. In this study, we engineered Corynebacterium glutamicum with a valerolactam biosynthetic pathway consisting of DavAB from Pseudomonas putida to convert L-lysine to 5-aminovaleric acid and β-alanine CoA transferase (Act) from Clostridium propionicum to produce valerolactam from 5-aminovaleric acid. Most of the L-lysine was converted into 5-aminovaleric acid, but promoter optimization and increasing the copy number of Act were insufficient to significantly improve the titer of valerolactam. To eliminate the bottleneck at Act, we designed a dynamic upregulation system (a positive feedback loop based on the valerolactam biosensor ChnR/Pb). We used laboratory evolution to engineer ChnR/Pb to have higher sensitivity and a higher dynamic output range, and the engineered ChnR-B1/Pb-E1 system was used to overexpress the rate-limiting enzymes (Act/ORF26/CaiC) that cyclize 5-aminovaleric acid into valerolactam. In glucose fed-batch culture, we obtained 12.33 g/L valerolactam from the dynamic upregulation of Act, 11.88 g/L using ORF26, and 12.15 g/L using CaiC. Our engineered biosensor (ChnR-B1/Pb-E1 system) was also sensitive to 0.01–100 mM caprolactam, which suggests that this dynamic upregulation system can be used to enhance caprolactam biosynthesis in the future. •Design of a dynamic upregulation system for the rate-limiting enzymes in the valerolactam biosynthetic pathway.•Laboratory evolution to engineer ChnR/Pb to have higher sensitivity and a higher dynamic output range.•The highest titer of Valerolactam reached 12.33 g/L in a 1.2 L fermenter.</abstract><cop>Belgium</cop><pub>Elsevier Inc</pub><pmid>36933819</pmid><doi>10.1016/j.ymben.2023.02.005</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1096-7176
ispartof Metabolic engineering, 2023-05, Vol.77, p.89-99
issn 1096-7176
1096-7184
language eng
recordid cdi_proquest_miscellaneous_2792901208
source Elsevier
subjects Biosensor engineering
Caprolactam - metabolism
Corynebacterium glutamicum
Corynebacterium glutamicum - metabolism
Dynamic regulation
Fermentation
Lead - metabolism
Lysine
Metabolic Engineering
Up-Regulation
Valerolactam
title Dynamic upregulation of the rate-limiting enzyme for valerolactam biosynthesis in Corynebacterium glutamicum
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A55%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20upregulation%20of%20the%20rate-limiting%20enzyme%20for%20valerolactam%20biosynthesis%20in%20Corynebacterium%20glutamicum&rft.jtitle=Metabolic%20engineering&rft.au=Zhao,%20Xixi&rft.date=2023-05&rft.volume=77&rft.spage=89&rft.epage=99&rft.pages=89-99&rft.issn=1096-7176&rft.eissn=1096-7184&rft_id=info:doi/10.1016/j.ymben.2023.02.005&rft_dat=%3Cproquest_cross%3E2792901208%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-7432e84a76d3ac51cc85985d03622d6440d51a181c76ba26566f92a29795b05e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2792901208&rft_id=info:pmid/36933819&rfr_iscdi=true