Loading…

Dynamic characteristic modeling of left ventricular assist devices based on hysteresis effects

The purpose of this study is to develop a new model for the dynamic characteristics of left ventricular assist devices (LVADs) interacting with the cardiovascular system under constant-speed modes. A new hysteresis model is established on the basis of the hysteresis effect and turbomachinery princip...

Full description

Saved in:
Bibliographic Details
Published in:Computers in biology and medicine 2023-05, Vol.157, p.106737-106737, Article 106737
Main Authors: Li, Shulei, Jin, Donghai, Gui, Xingmin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-8443ca66511507fbaf9b31c19e14d8e7b95c55fba86c7276cddcecd3c283ebf33
cites cdi_FETCH-LOGICAL-c402t-8443ca66511507fbaf9b31c19e14d8e7b95c55fba86c7276cddcecd3c283ebf33
container_end_page 106737
container_issue
container_start_page 106737
container_title Computers in biology and medicine
container_volume 157
creator Li, Shulei
Jin, Donghai
Gui, Xingmin
description The purpose of this study is to develop a new model for the dynamic characteristics of left ventricular assist devices (LVADs) interacting with the cardiovascular system under constant-speed modes. A new hysteresis model is established on the basis of the hysteresis effect and turbomachinery principles. The simulation results from the hysteresis model were compared with the inertia model. The in-vitro experiment results of a centrifugal pump (from literature) and the unsteady computational fluid dynamics (CFD) simulation results of an axial pump were used as the benchmarks. Compared with the inertia model, at the partial support mode, the relative estimation error of the time to the maximum and minimum pump flow (Q) in the hysteresis model decreased at least 16.3% cardiac cycle (Tc) in the centrifugal pump and at least 1.9% Tc in the axial pump, indicating its ability to simulate more realistic Q fluctuations. Moreover, the hysteresis model could predict an accurate time distribution of different Q. The hysteresis model provides a general calculation method for simulating the dynamic characteristics of constant-speed LVADs under interaction with the cardiovascular system. It is more accurate than the inertia model. The hysteresis model is helpful for the rapid estimation of unsteady dynamic characteristics in absence of a physical pump prototype at the preliminary design stage. •Developed a new dynamic characteristic model of LVADs interacting with the cardiovascular system.•Provided a general calculation method of constant-speed LVADs based on hysteresis effect and turbomachinery principles.•Simulated pump flow fluctuations are in good accordance with in-vitro and unsteady CFD results.•Helpful for the rapid estimation of unsteady dynamic characteristics at the preliminary design stage.
doi_str_mv 10.1016/j.compbiomed.2023.106737
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2792907824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482523002020</els_id><sourcerecordid>2791584639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-8443ca66511507fbaf9b31c19e14d8e7b95c55fba86c7276cddcecd3c283ebf33</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi1ERZfCX0CWuHDJ4q_YyRHa8iFV6gWuWM54TL1K4sVOVtp_X6-2FRIXTqOZeeZD70sI5WzLGdcfd1tI036IaUK_FUzIWtZGmhdkwzvTN6yV6iXZMMZZozrRXpLXpewYY4pJ9opcSt0Lrlq9Ib9ujrObIlB4cNnBgjmWpaZT8jjG-TdNgY4YFnrAeckR1tFl6kqpFPV4iICFDq6gp2mmD8dSF2BtUgwBYSlvyEVwY8G3T_GK_Pxy--P6W3N3__X79ae7BhQTS9MpJcFp3XLeMhMGF_pBcuA9cuU7NEPfQtvWeqfBCKPBe0DwEkQncQhSXpEP5737nP6sWBY7xQI4jm7GtBYrTC96ZjqhKvr-H3SX1jzX704UbzulZV-p7kxBTqVkDHaf4-Ty0XJmTx7Ynf3rgT15YM8e1NF3TwfW4dR7HnwWvQKfzwBWRQ4Rsy0QcQb0MVfRrE_x_1ceAdpwnmc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791584639</pqid></control><display><type>article</type><title>Dynamic characteristic modeling of left ventricular assist devices based on hysteresis effects</title><source>ScienceDirect Journals</source><creator>Li, Shulei ; Jin, Donghai ; Gui, Xingmin</creator><creatorcontrib>Li, Shulei ; Jin, Donghai ; Gui, Xingmin</creatorcontrib><description>The purpose of this study is to develop a new model for the dynamic characteristics of left ventricular assist devices (LVADs) interacting with the cardiovascular system under constant-speed modes. A new hysteresis model is established on the basis of the hysteresis effect and turbomachinery principles. The simulation results from the hysteresis model were compared with the inertia model. The in-vitro experiment results of a centrifugal pump (from literature) and the unsteady computational fluid dynamics (CFD) simulation results of an axial pump were used as the benchmarks. Compared with the inertia model, at the partial support mode, the relative estimation error of the time to the maximum and minimum pump flow (Q) in the hysteresis model decreased at least 16.3% cardiac cycle (Tc) in the centrifugal pump and at least 1.9% Tc in the axial pump, indicating its ability to simulate more realistic Q fluctuations. Moreover, the hysteresis model could predict an accurate time distribution of different Q. The hysteresis model provides a general calculation method for simulating the dynamic characteristics of constant-speed LVADs under interaction with the cardiovascular system. It is more accurate than the inertia model. The hysteresis model is helpful for the rapid estimation of unsteady dynamic characteristics in absence of a physical pump prototype at the preliminary design stage. •Developed a new dynamic characteristic model of LVADs interacting with the cardiovascular system.•Provided a general calculation method of constant-speed LVADs based on hysteresis effect and turbomachinery principles.•Simulated pump flow fluctuations are in good accordance with in-vitro and unsteady CFD results.•Helpful for the rapid estimation of unsteady dynamic characteristics at the preliminary design stage.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2023.106737</identifier><identifier>PMID: 36921456</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Axial flow pumps ; Benchmarks ; Cardiovascular system ; Centrifugal pumps ; Computational fluid dynamics ; Computer applications ; Computer Simulation ; Design ; Dynamic characteristic modeling ; Dynamic characteristics ; Flow control ; Fluid dynamics ; Heart ; Heart-Assist Devices ; Hydrodynamics ; Hysteresis ; Hysteresis effect ; Hysteresis models ; Inertia ; Left ventricular assist device ; Mathematical models ; Methods ; Models, Cardiovascular ; Preliminary designs ; Prototypes ; Simulation ; Turbomachinery ; Unsteady characteristic loop ; Velocity ; Ventricle ; Ventricular assist devices</subject><ispartof>Computers in biology and medicine, 2023-05, Vol.157, p.106737-106737, Article 106737</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><rights>2023. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-8443ca66511507fbaf9b31c19e14d8e7b95c55fba86c7276cddcecd3c283ebf33</citedby><cites>FETCH-LOGICAL-c402t-8443ca66511507fbaf9b31c19e14d8e7b95c55fba86c7276cddcecd3c283ebf33</cites><orcidid>0000-0002-1802-0902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36921456$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Shulei</creatorcontrib><creatorcontrib>Jin, Donghai</creatorcontrib><creatorcontrib>Gui, Xingmin</creatorcontrib><title>Dynamic characteristic modeling of left ventricular assist devices based on hysteresis effects</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>The purpose of this study is to develop a new model for the dynamic characteristics of left ventricular assist devices (LVADs) interacting with the cardiovascular system under constant-speed modes. A new hysteresis model is established on the basis of the hysteresis effect and turbomachinery principles. The simulation results from the hysteresis model were compared with the inertia model. The in-vitro experiment results of a centrifugal pump (from literature) and the unsteady computational fluid dynamics (CFD) simulation results of an axial pump were used as the benchmarks. Compared with the inertia model, at the partial support mode, the relative estimation error of the time to the maximum and minimum pump flow (Q) in the hysteresis model decreased at least 16.3% cardiac cycle (Tc) in the centrifugal pump and at least 1.9% Tc in the axial pump, indicating its ability to simulate more realistic Q fluctuations. Moreover, the hysteresis model could predict an accurate time distribution of different Q. The hysteresis model provides a general calculation method for simulating the dynamic characteristics of constant-speed LVADs under interaction with the cardiovascular system. It is more accurate than the inertia model. The hysteresis model is helpful for the rapid estimation of unsteady dynamic characteristics in absence of a physical pump prototype at the preliminary design stage. •Developed a new dynamic characteristic model of LVADs interacting with the cardiovascular system.•Provided a general calculation method of constant-speed LVADs based on hysteresis effect and turbomachinery principles.•Simulated pump flow fluctuations are in good accordance with in-vitro and unsteady CFD results.•Helpful for the rapid estimation of unsteady dynamic characteristics at the preliminary design stage.</description><subject>Axial flow pumps</subject><subject>Benchmarks</subject><subject>Cardiovascular system</subject><subject>Centrifugal pumps</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Design</subject><subject>Dynamic characteristic modeling</subject><subject>Dynamic characteristics</subject><subject>Flow control</subject><subject>Fluid dynamics</subject><subject>Heart</subject><subject>Heart-Assist Devices</subject><subject>Hydrodynamics</subject><subject>Hysteresis</subject><subject>Hysteresis effect</subject><subject>Hysteresis models</subject><subject>Inertia</subject><subject>Left ventricular assist device</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Models, Cardiovascular</subject><subject>Preliminary designs</subject><subject>Prototypes</subject><subject>Simulation</subject><subject>Turbomachinery</subject><subject>Unsteady characteristic loop</subject><subject>Velocity</subject><subject>Ventricle</subject><subject>Ventricular assist devices</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi1ERZfCX0CWuHDJ4q_YyRHa8iFV6gWuWM54TL1K4sVOVtp_X6-2FRIXTqOZeeZD70sI5WzLGdcfd1tI036IaUK_FUzIWtZGmhdkwzvTN6yV6iXZMMZZozrRXpLXpewYY4pJ9opcSt0Lrlq9Ib9ujrObIlB4cNnBgjmWpaZT8jjG-TdNgY4YFnrAeckR1tFl6kqpFPV4iICFDq6gp2mmD8dSF2BtUgwBYSlvyEVwY8G3T_GK_Pxy--P6W3N3__X79ae7BhQTS9MpJcFp3XLeMhMGF_pBcuA9cuU7NEPfQtvWeqfBCKPBe0DwEkQncQhSXpEP5737nP6sWBY7xQI4jm7GtBYrTC96ZjqhKvr-H3SX1jzX704UbzulZV-p7kxBTqVkDHaf4-Ty0XJmTx7Ynf3rgT15YM8e1NF3TwfW4dR7HnwWvQKfzwBWRQ4Rsy0QcQb0MVfRrE_x_1ceAdpwnmc</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Li, Shulei</creator><creator>Jin, Donghai</creator><creator>Gui, Xingmin</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1802-0902</orcidid></search><sort><creationdate>202305</creationdate><title>Dynamic characteristic modeling of left ventricular assist devices based on hysteresis effects</title><author>Li, Shulei ; Jin, Donghai ; Gui, Xingmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-8443ca66511507fbaf9b31c19e14d8e7b95c55fba86c7276cddcecd3c283ebf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Axial flow pumps</topic><topic>Benchmarks</topic><topic>Cardiovascular system</topic><topic>Centrifugal pumps</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Design</topic><topic>Dynamic characteristic modeling</topic><topic>Dynamic characteristics</topic><topic>Flow control</topic><topic>Fluid dynamics</topic><topic>Heart</topic><topic>Heart-Assist Devices</topic><topic>Hydrodynamics</topic><topic>Hysteresis</topic><topic>Hysteresis effect</topic><topic>Hysteresis models</topic><topic>Inertia</topic><topic>Left ventricular assist device</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Models, Cardiovascular</topic><topic>Preliminary designs</topic><topic>Prototypes</topic><topic>Simulation</topic><topic>Turbomachinery</topic><topic>Unsteady characteristic loop</topic><topic>Velocity</topic><topic>Ventricle</topic><topic>Ventricular assist devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shulei</creatorcontrib><creatorcontrib>Jin, Donghai</creatorcontrib><creatorcontrib>Gui, Xingmin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shulei</au><au>Jin, Donghai</au><au>Gui, Xingmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic characteristic modeling of left ventricular assist devices based on hysteresis effects</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2023-05</date><risdate>2023</risdate><volume>157</volume><spage>106737</spage><epage>106737</epage><pages>106737-106737</pages><artnum>106737</artnum><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>The purpose of this study is to develop a new model for the dynamic characteristics of left ventricular assist devices (LVADs) interacting with the cardiovascular system under constant-speed modes. A new hysteresis model is established on the basis of the hysteresis effect and turbomachinery principles. The simulation results from the hysteresis model were compared with the inertia model. The in-vitro experiment results of a centrifugal pump (from literature) and the unsteady computational fluid dynamics (CFD) simulation results of an axial pump were used as the benchmarks. Compared with the inertia model, at the partial support mode, the relative estimation error of the time to the maximum and minimum pump flow (Q) in the hysteresis model decreased at least 16.3% cardiac cycle (Tc) in the centrifugal pump and at least 1.9% Tc in the axial pump, indicating its ability to simulate more realistic Q fluctuations. Moreover, the hysteresis model could predict an accurate time distribution of different Q. The hysteresis model provides a general calculation method for simulating the dynamic characteristics of constant-speed LVADs under interaction with the cardiovascular system. It is more accurate than the inertia model. The hysteresis model is helpful for the rapid estimation of unsteady dynamic characteristics in absence of a physical pump prototype at the preliminary design stage. •Developed a new dynamic characteristic model of LVADs interacting with the cardiovascular system.•Provided a general calculation method of constant-speed LVADs based on hysteresis effect and turbomachinery principles.•Simulated pump flow fluctuations are in good accordance with in-vitro and unsteady CFD results.•Helpful for the rapid estimation of unsteady dynamic characteristics at the preliminary design stage.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>36921456</pmid><doi>10.1016/j.compbiomed.2023.106737</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1802-0902</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2023-05, Vol.157, p.106737-106737, Article 106737
issn 0010-4825
1879-0534
language eng
recordid cdi_proquest_miscellaneous_2792907824
source ScienceDirect Journals
subjects Axial flow pumps
Benchmarks
Cardiovascular system
Centrifugal pumps
Computational fluid dynamics
Computer applications
Computer Simulation
Design
Dynamic characteristic modeling
Dynamic characteristics
Flow control
Fluid dynamics
Heart
Heart-Assist Devices
Hydrodynamics
Hysteresis
Hysteresis effect
Hysteresis models
Inertia
Left ventricular assist device
Mathematical models
Methods
Models, Cardiovascular
Preliminary designs
Prototypes
Simulation
Turbomachinery
Unsteady characteristic loop
Velocity
Ventricle
Ventricular assist devices
title Dynamic characteristic modeling of left ventricular assist devices based on hysteresis effects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A33%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20characteristic%20modeling%20of%20left%20ventricular%20assist%20devices%20based%20on%20hysteresis%20effects&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Li,%20Shulei&rft.date=2023-05&rft.volume=157&rft.spage=106737&rft.epage=106737&rft.pages=106737-106737&rft.artnum=106737&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2023.106737&rft_dat=%3Cproquest_cross%3E2791584639%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-8443ca66511507fbaf9b31c19e14d8e7b95c55fba86c7276cddcecd3c283ebf33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791584639&rft_id=info:pmid/36921456&rfr_iscdi=true