Loading…
Epoxy nanocomposites with high mechanical and tribological performance
Small ceramic particles are known to enhance the mechanical and tribological properties of polymers. Introduced into an epoxy resin, the filler morphology, size, particle amount and the dispersion homogeneity influence extensively the composite's performance. In the present study, various amoun...
Saved in:
Published in: | Composites science and technology 2003-11, Vol.63 (14), p.2055-2067 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Small ceramic particles are known to enhance the mechanical and tribological properties of polymers. Introduced into an epoxy resin, the filler morphology, size, particle amount and the dispersion homogeneity influence extensively the composite's performance. In the present study, various amounts of micro- and nano-scale particles (calcium silicate CaSiO
3, 4–15 μm, alumina Al
2O
3, 13 nm) were systematically introduced into an epoxy polymer matrix for reinforcement purposes. The influence of these particles on the impact energy, flexural strength, dynamic mechanical thermal properties and block-on-ring wear behavior was investigated. If the nanoparticles were incorporated only, they yield an effective improvement of the epoxy resin at a nanoparticle content of already 1–2 vol.% Al
2O
3. Choosing the nanocomposite with the highest performance as a matrix, conventional CaSiO
3 microparticles were further added in order to achieve additional enhancements in the mechanical properties. In fact, synergistic effects were found in the form of a further increase in wear resistance and stiffness. Several reasons to explain these effects in terms of reinforcing mechanisms were discussed. |
---|---|
ISSN: | 0266-3538 1879-1050 |
DOI: | 10.1016/S0266-3538(03)00115-5 |