Loading…
Monitoring Pavement Changes in a Rehabilitation Project with Continuous Rolling Dynamic Deflectometer Profiles
The success of a rehabilitation project that involves replacement of the asphalt concrete (AC) overlay on a concrete pavement often depends on the assessment of the existing conditions and the repair of critically weak locations. In a case study, a rolling dynamic deflectometer (RDD) was used to col...
Saved in:
Published in: | Transportation research record 2005, Vol.1905 (1), p.2-16 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-63f7139981502d72c82c4be593087e3912aa7a5beeaf3e124513e2900f49c2f13 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-63f7139981502d72c82c4be593087e3912aa7a5beeaf3e124513e2900f49c2f13 |
container_end_page | 16 |
container_issue | 1 |
container_start_page | 2 |
container_title | Transportation research record |
container_volume | 1905 |
creator | Lee, Jeffrey L. Y. Stokoe, Kenneth H. Chen, Dar-Hao Garrison, Miles R. Nam, Boo Hyun |
description | The success of a rehabilitation project that involves replacement of the asphalt concrete (AC) overlay on a concrete pavement often depends on the assessment of the existing conditions and the repair of critically weak locations. In a case study, a rolling dynamic deflectometer (RDD) was used to collect continuous deflection profiles at different stages in such a project. The project, conducted by the Texas Department of Transportation, was located in the Atlanta District. The condition of the pavement was monitored with an RDD in each stage. The stages ranged from before milling of the original AC overlay to 22 months after the placement of a new overlay. The deflection profiles measured after milling were used to identify locations with a high potential for reflection cracking. After the new overlay was placed, profiling was repeated at three different times to (a) monitor changes at locations of previously high deflections, (b) evaluate the effectiveness of full-depth repairs, and (c) group different AC test sections of the new overlay according to the condition of the underlying concrete pavement. It was found that the continuous deflection profiles obtained at the start of a rehabilitation project can be used to identify high-deflection locations that, if not repaired, will likely deteriorate rapidly after the new overlay is placed. The continuous deflection profile measured on the concrete pavement after milling was particularly helpful in identifying high-deflection locations that were irregularly spaced. Continuous deflection profiles, measured at various times after placement of the new overlay, effectively tracked the zones of deterioration. |
doi_str_mv | 10.1177/0361198105190500101 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27943496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0361198105190500101</sage_id><sourcerecordid>27943496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-63f7139981502d72c82c4be593087e3912aa7a5beeaf3e124513e2900f49c2f13</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBWy8YhfwI4nrJUp5SSCqCtaRa8atK8cutgPq35OoLBGr2Zxz584gdEnJNaVC3BBeUypnlFRUkooQSugRmjBay6IkFTtGk5EoRuQUnaW0JYTzUvAJ8i_B2xyi9Wu8UF_Qgc-42Si_hoStxwovYaNW1tmssg0eL2LYgs742-YNboLP1vehT3gZnBtD5nuvOqvxHIwbuNBBhjhaxjpI5-jEKJfg4ndO0fv93VvzWDy_Pjw1t8-F5qXMRc2NoFwOdSvCPgTTM6bLFVSSk5kALilTSqhqBaAMB8rKinJgkhBTSs0M5VN0dcjdxfDZQ8ptZ5MG55SHoW3LhCyHTfUA8gOoY0gpgml30XYq7ltK2vG37R-_HSxysJJaQ7sNffTDNf8qP_TTens</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27943496</pqid></control><display><type>article</type><title>Monitoring Pavement Changes in a Rehabilitation Project with Continuous Rolling Dynamic Deflectometer Profiles</title><source>Sage Journals Online</source><creator>Lee, Jeffrey L. Y. ; Stokoe, Kenneth H. ; Chen, Dar-Hao ; Garrison, Miles R. ; Nam, Boo Hyun</creator><creatorcontrib>Lee, Jeffrey L. Y. ; Stokoe, Kenneth H. ; Chen, Dar-Hao ; Garrison, Miles R. ; Nam, Boo Hyun</creatorcontrib><description>The success of a rehabilitation project that involves replacement of the asphalt concrete (AC) overlay on a concrete pavement often depends on the assessment of the existing conditions and the repair of critically weak locations. In a case study, a rolling dynamic deflectometer (RDD) was used to collect continuous deflection profiles at different stages in such a project. The project, conducted by the Texas Department of Transportation, was located in the Atlanta District. The condition of the pavement was monitored with an RDD in each stage. The stages ranged from before milling of the original AC overlay to 22 months after the placement of a new overlay. The deflection profiles measured after milling were used to identify locations with a high potential for reflection cracking. After the new overlay was placed, profiling was repeated at three different times to (a) monitor changes at locations of previously high deflections, (b) evaluate the effectiveness of full-depth repairs, and (c) group different AC test sections of the new overlay according to the condition of the underlying concrete pavement. It was found that the continuous deflection profiles obtained at the start of a rehabilitation project can be used to identify high-deflection locations that, if not repaired, will likely deteriorate rapidly after the new overlay is placed. The continuous deflection profile measured on the concrete pavement after milling was particularly helpful in identifying high-deflection locations that were irregularly spaced. Continuous deflection profiles, measured at various times after placement of the new overlay, effectively tracked the zones of deterioration.</description><identifier>ISSN: 0361-1981</identifier><identifier>EISSN: 2169-4052</identifier><identifier>DOI: 10.1177/0361198105190500101</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><ispartof>Transportation research record, 2005, Vol.1905 (1), p.2-16</ispartof><rights>2005 National Academy of Sciences</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-63f7139981502d72c82c4be593087e3912aa7a5beeaf3e124513e2900f49c2f13</citedby><cites>FETCH-LOGICAL-c349t-63f7139981502d72c82c4be593087e3912aa7a5beeaf3e124513e2900f49c2f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904,79111</link.rule.ids></links><search><creatorcontrib>Lee, Jeffrey L. Y.</creatorcontrib><creatorcontrib>Stokoe, Kenneth H.</creatorcontrib><creatorcontrib>Chen, Dar-Hao</creatorcontrib><creatorcontrib>Garrison, Miles R.</creatorcontrib><creatorcontrib>Nam, Boo Hyun</creatorcontrib><title>Monitoring Pavement Changes in a Rehabilitation Project with Continuous Rolling Dynamic Deflectometer Profiles</title><title>Transportation research record</title><description>The success of a rehabilitation project that involves replacement of the asphalt concrete (AC) overlay on a concrete pavement often depends on the assessment of the existing conditions and the repair of critically weak locations. In a case study, a rolling dynamic deflectometer (RDD) was used to collect continuous deflection profiles at different stages in such a project. The project, conducted by the Texas Department of Transportation, was located in the Atlanta District. The condition of the pavement was monitored with an RDD in each stage. The stages ranged from before milling of the original AC overlay to 22 months after the placement of a new overlay. The deflection profiles measured after milling were used to identify locations with a high potential for reflection cracking. After the new overlay was placed, profiling was repeated at three different times to (a) monitor changes at locations of previously high deflections, (b) evaluate the effectiveness of full-depth repairs, and (c) group different AC test sections of the new overlay according to the condition of the underlying concrete pavement. It was found that the continuous deflection profiles obtained at the start of a rehabilitation project can be used to identify high-deflection locations that, if not repaired, will likely deteriorate rapidly after the new overlay is placed. The continuous deflection profile measured on the concrete pavement after milling was particularly helpful in identifying high-deflection locations that were irregularly spaced. Continuous deflection profiles, measured at various times after placement of the new overlay, effectively tracked the zones of deterioration.</description><issn>0361-1981</issn><issn>2169-4052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBWy8YhfwI4nrJUp5SSCqCtaRa8atK8cutgPq35OoLBGr2Zxz584gdEnJNaVC3BBeUypnlFRUkooQSugRmjBay6IkFTtGk5EoRuQUnaW0JYTzUvAJ8i_B2xyi9Wu8UF_Qgc-42Si_hoStxwovYaNW1tmssg0eL2LYgs742-YNboLP1vehT3gZnBtD5nuvOqvxHIwbuNBBhjhaxjpI5-jEKJfg4ndO0fv93VvzWDy_Pjw1t8-F5qXMRc2NoFwOdSvCPgTTM6bLFVSSk5kALilTSqhqBaAMB8rKinJgkhBTSs0M5VN0dcjdxfDZQ8ptZ5MG55SHoW3LhCyHTfUA8gOoY0gpgml30XYq7ltK2vG37R-_HSxysJJaQ7sNffTDNf8qP_TTens</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Lee, Jeffrey L. Y.</creator><creator>Stokoe, Kenneth H.</creator><creator>Chen, Dar-Hao</creator><creator>Garrison, Miles R.</creator><creator>Nam, Boo Hyun</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>2005</creationdate><title>Monitoring Pavement Changes in a Rehabilitation Project with Continuous Rolling Dynamic Deflectometer Profiles</title><author>Lee, Jeffrey L. Y. ; Stokoe, Kenneth H. ; Chen, Dar-Hao ; Garrison, Miles R. ; Nam, Boo Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-63f7139981502d72c82c4be593087e3912aa7a5beeaf3e124513e2900f49c2f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jeffrey L. Y.</creatorcontrib><creatorcontrib>Stokoe, Kenneth H.</creatorcontrib><creatorcontrib>Chen, Dar-Hao</creatorcontrib><creatorcontrib>Garrison, Miles R.</creatorcontrib><creatorcontrib>Nam, Boo Hyun</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Transportation research record</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jeffrey L. Y.</au><au>Stokoe, Kenneth H.</au><au>Chen, Dar-Hao</au><au>Garrison, Miles R.</au><au>Nam, Boo Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring Pavement Changes in a Rehabilitation Project with Continuous Rolling Dynamic Deflectometer Profiles</atitle><jtitle>Transportation research record</jtitle><date>2005</date><risdate>2005</risdate><volume>1905</volume><issue>1</issue><spage>2</spage><epage>16</epage><pages>2-16</pages><issn>0361-1981</issn><eissn>2169-4052</eissn><abstract>The success of a rehabilitation project that involves replacement of the asphalt concrete (AC) overlay on a concrete pavement often depends on the assessment of the existing conditions and the repair of critically weak locations. In a case study, a rolling dynamic deflectometer (RDD) was used to collect continuous deflection profiles at different stages in such a project. The project, conducted by the Texas Department of Transportation, was located in the Atlanta District. The condition of the pavement was monitored with an RDD in each stage. The stages ranged from before milling of the original AC overlay to 22 months after the placement of a new overlay. The deflection profiles measured after milling were used to identify locations with a high potential for reflection cracking. After the new overlay was placed, profiling was repeated at three different times to (a) monitor changes at locations of previously high deflections, (b) evaluate the effectiveness of full-depth repairs, and (c) group different AC test sections of the new overlay according to the condition of the underlying concrete pavement. It was found that the continuous deflection profiles obtained at the start of a rehabilitation project can be used to identify high-deflection locations that, if not repaired, will likely deteriorate rapidly after the new overlay is placed. The continuous deflection profile measured on the concrete pavement after milling was particularly helpful in identifying high-deflection locations that were irregularly spaced. Continuous deflection profiles, measured at various times after placement of the new overlay, effectively tracked the zones of deterioration.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/0361198105190500101</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-1981 |
ispartof | Transportation research record, 2005, Vol.1905 (1), p.2-16 |
issn | 0361-1981 2169-4052 |
language | eng |
recordid | cdi_proquest_miscellaneous_27943496 |
source | Sage Journals Online |
title | Monitoring Pavement Changes in a Rehabilitation Project with Continuous Rolling Dynamic Deflectometer Profiles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A42%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20Pavement%20Changes%20in%20a%20Rehabilitation%20Project%20with%20Continuous%20Rolling%20Dynamic%20Deflectometer%20Profiles&rft.jtitle=Transportation%20research%20record&rft.au=Lee,%20Jeffrey%20L.%20Y.&rft.date=2005&rft.volume=1905&rft.issue=1&rft.spage=2&rft.epage=16&rft.pages=2-16&rft.issn=0361-1981&rft.eissn=2169-4052&rft_id=info:doi/10.1177/0361198105190500101&rft_dat=%3Cproquest_cross%3E27943496%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-63f7139981502d72c82c4be593087e3912aa7a5beeaf3e124513e2900f49c2f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27943496&rft_id=info:pmid/&rft_sage_id=10.1177_0361198105190500101&rfr_iscdi=true |