Loading…
CO and CO2 adsorption mechanism in Fe(pz)[Pt(CN)4] probed by neutron scattering and density-functional theory calculations
We study the binding mechanism of CO and CO2 in the porous spin-crossover compound Fe(pz)[Pt(CN)4] by combining neutron diffraction (ND), inelastic neutron scattering (INS) and density–functional theory (DFT) calculations. Two adsorption sites are identified, above the open-metal site and between th...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2023-04, Vol.25 (16), p.11338-11349 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-9aa55e9d2af9b2d6a8896ca65ec6a14ef13d2cb304f82f0f1bd162b9a8e6a4a93 |
---|---|
cites | |
container_end_page | 11349 |
container_issue | 16 |
container_start_page | 11338 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 25 |
creator | Fernández-Blanco, Ángel Piñeiro-López, Lucía Jiménez-Ruiz, Mónica Rols, Stephane Real, José Antonio Jose Sanchez Costa Poloni, Roberta Rodríguez-Velamazán, J Alberto |
description | We study the binding mechanism of CO and CO2 in the porous spin-crossover compound Fe(pz)[Pt(CN)4] by combining neutron diffraction (ND), inelastic neutron scattering (INS) and density–functional theory (DFT) calculations. Two adsorption sites are identified, above the open-metal site and between the pyrazine rings. For CO adsorption, the guest molecules are parallel to the neighboring gas molecules and perpendicular to the pyrazine planes. For CO2, the molecules adsorbed on-top of the open-metal site are perpendicular to the pyrazine rings and those between the pyrazines are almost parallel to them. These configurations are consistent with the INS data, which are in good agreement with the computed generalized phonon density of states. The most relevant signatures of the binding occur in the spectral region around 100 cm−1 and 400 cm−1. The first peak blue-shifts for both CO and CO2 adsorption, while the second red-shifts for CO and remains nearly unchanged for CO2. These spectral changes depend both from steric effects and the nature of the interaction. The interpretation of the INS data as supported by the computed binding energy and the molecular orbital analysis are consistent with a physisorption mechanism for both gases. This work shows the strength of the combination of neutron techniques and DFT calculations to characterize in detail the gas adsorption mechanism in this type of materials. |
doi_str_mv | 10.1039/d3cp00670k |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2795358576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2806329395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-9aa55e9d2af9b2d6a8896ca65ec6a14ef13d2cb304f82f0f1bd162b9a8e6a4a93</originalsourceid><addsrcrecordid>eNpdjr1OwzAURi0EEqWw8ASWWNoh4J_EiUcU0YJUUQaYEKpu7Buakjohdob26UkBMTDdT1dHR4eQS86uOZP6xkrTMqZS9nFERjxWMtIsi4__dqpOyZn3G8YYT7gckX2-pOAszZeCgvVN14aqcXSLZg2u8ltaOTrDSbufvj6FSf44jd9o2zUFWlrsqMM-dAPuDYSAXeXev2UWna_CLip7Zw46qGlYY9PtqIHa9DUcnv6cnJRQe7z4vWPyMrt7zu-jxXL-kN8uIiO0DJEGSBLUVkCpC2EVZJlWBlSCRgGPseTSClNIFpeZKFnJC8uVKDRkqCAGLcdk8uMduj979GG1rbzBugaHTe9XItWJTLIkVQN69Q_dNH039A9UxpQcggb2CzXKbeE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806329395</pqid></control><display><type>article</type><title>CO and CO2 adsorption mechanism in Fe(pz)[Pt(CN)4] probed by neutron scattering and density-functional theory calculations</title><source>Royal Society of Chemistry</source><creator>Fernández-Blanco, Ángel ; Piñeiro-López, Lucía ; Jiménez-Ruiz, Mónica ; Rols, Stephane ; Real, José Antonio ; Jose Sanchez Costa ; Poloni, Roberta ; Rodríguez-Velamazán, J Alberto</creator><creatorcontrib>Fernández-Blanco, Ángel ; Piñeiro-López, Lucía ; Jiménez-Ruiz, Mónica ; Rols, Stephane ; Real, José Antonio ; Jose Sanchez Costa ; Poloni, Roberta ; Rodríguez-Velamazán, J Alberto</creatorcontrib><description>We study the binding mechanism of CO and CO2 in the porous spin-crossover compound Fe(pz)[Pt(CN)4] by combining neutron diffraction (ND), inelastic neutron scattering (INS) and density–functional theory (DFT) calculations. Two adsorption sites are identified, above the open-metal site and between the pyrazine rings. For CO adsorption, the guest molecules are parallel to the neighboring gas molecules and perpendicular to the pyrazine planes. For CO2, the molecules adsorbed on-top of the open-metal site are perpendicular to the pyrazine rings and those between the pyrazines are almost parallel to them. These configurations are consistent with the INS data, which are in good agreement with the computed generalized phonon density of states. The most relevant signatures of the binding occur in the spectral region around 100 cm−1 and 400 cm−1. The first peak blue-shifts for both CO and CO2 adsorption, while the second red-shifts for CO and remains nearly unchanged for CO2. These spectral changes depend both from steric effects and the nature of the interaction. The interpretation of the INS data as supported by the computed binding energy and the molecular orbital analysis are consistent with a physisorption mechanism for both gases. This work shows the strength of the combination of neutron techniques and DFT calculations to characterize in detail the gas adsorption mechanism in this type of materials.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp00670k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adsorption ; Carbon dioxide ; Carbon monoxide ; Computation ; Density functional theory ; Inelastic scattering ; Mathematical analysis ; Molecular orbitals ; Neutron diffraction ; Neutron scattering ; Neutrons ; Pyrazines ; Steric effects</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-04, Vol.25 (16), p.11338-11349</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-9aa55e9d2af9b2d6a8896ca65ec6a14ef13d2cb304f82f0f1bd162b9a8e6a4a93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Fernández-Blanco, Ángel</creatorcontrib><creatorcontrib>Piñeiro-López, Lucía</creatorcontrib><creatorcontrib>Jiménez-Ruiz, Mónica</creatorcontrib><creatorcontrib>Rols, Stephane</creatorcontrib><creatorcontrib>Real, José Antonio</creatorcontrib><creatorcontrib>Jose Sanchez Costa</creatorcontrib><creatorcontrib>Poloni, Roberta</creatorcontrib><creatorcontrib>Rodríguez-Velamazán, J Alberto</creatorcontrib><title>CO and CO2 adsorption mechanism in Fe(pz)[Pt(CN)4] probed by neutron scattering and density-functional theory calculations</title><title>Physical chemistry chemical physics : PCCP</title><description>We study the binding mechanism of CO and CO2 in the porous spin-crossover compound Fe(pz)[Pt(CN)4] by combining neutron diffraction (ND), inelastic neutron scattering (INS) and density–functional theory (DFT) calculations. Two adsorption sites are identified, above the open-metal site and between the pyrazine rings. For CO adsorption, the guest molecules are parallel to the neighboring gas molecules and perpendicular to the pyrazine planes. For CO2, the molecules adsorbed on-top of the open-metal site are perpendicular to the pyrazine rings and those between the pyrazines are almost parallel to them. These configurations are consistent with the INS data, which are in good agreement with the computed generalized phonon density of states. The most relevant signatures of the binding occur in the spectral region around 100 cm−1 and 400 cm−1. The first peak blue-shifts for both CO and CO2 adsorption, while the second red-shifts for CO and remains nearly unchanged for CO2. These spectral changes depend both from steric effects and the nature of the interaction. The interpretation of the INS data as supported by the computed binding energy and the molecular orbital analysis are consistent with a physisorption mechanism for both gases. This work shows the strength of the combination of neutron techniques and DFT calculations to characterize in detail the gas adsorption mechanism in this type of materials.</description><subject>Adsorption</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Computation</subject><subject>Density functional theory</subject><subject>Inelastic scattering</subject><subject>Mathematical analysis</subject><subject>Molecular orbitals</subject><subject>Neutron diffraction</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>Pyrazines</subject><subject>Steric effects</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdjr1OwzAURi0EEqWw8ASWWNoh4J_EiUcU0YJUUQaYEKpu7Buakjohdob26UkBMTDdT1dHR4eQS86uOZP6xkrTMqZS9nFERjxWMtIsi4__dqpOyZn3G8YYT7gckX2-pOAszZeCgvVN14aqcXSLZg2u8ltaOTrDSbufvj6FSf44jd9o2zUFWlrsqMM-dAPuDYSAXeXev2UWna_CLip7Zw46qGlYY9PtqIHa9DUcnv6cnJRQe7z4vWPyMrt7zu-jxXL-kN8uIiO0DJEGSBLUVkCpC2EVZJlWBlSCRgGPseTSClNIFpeZKFnJC8uVKDRkqCAGLcdk8uMduj979GG1rbzBugaHTe9XItWJTLIkVQN69Q_dNH039A9UxpQcggb2CzXKbeE</recordid><startdate>20230426</startdate><enddate>20230426</enddate><creator>Fernández-Blanco, Ángel</creator><creator>Piñeiro-López, Lucía</creator><creator>Jiménez-Ruiz, Mónica</creator><creator>Rols, Stephane</creator><creator>Real, José Antonio</creator><creator>Jose Sanchez Costa</creator><creator>Poloni, Roberta</creator><creator>Rodríguez-Velamazán, J Alberto</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20230426</creationdate><title>CO and CO2 adsorption mechanism in Fe(pz)[Pt(CN)4] probed by neutron scattering and density-functional theory calculations</title><author>Fernández-Blanco, Ángel ; Piñeiro-López, Lucía ; Jiménez-Ruiz, Mónica ; Rols, Stephane ; Real, José Antonio ; Jose Sanchez Costa ; Poloni, Roberta ; Rodríguez-Velamazán, J Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-9aa55e9d2af9b2d6a8896ca65ec6a14ef13d2cb304f82f0f1bd162b9a8e6a4a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Computation</topic><topic>Density functional theory</topic><topic>Inelastic scattering</topic><topic>Mathematical analysis</topic><topic>Molecular orbitals</topic><topic>Neutron diffraction</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>Pyrazines</topic><topic>Steric effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernández-Blanco, Ángel</creatorcontrib><creatorcontrib>Piñeiro-López, Lucía</creatorcontrib><creatorcontrib>Jiménez-Ruiz, Mónica</creatorcontrib><creatorcontrib>Rols, Stephane</creatorcontrib><creatorcontrib>Real, José Antonio</creatorcontrib><creatorcontrib>Jose Sanchez Costa</creatorcontrib><creatorcontrib>Poloni, Roberta</creatorcontrib><creatorcontrib>Rodríguez-Velamazán, J Alberto</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernández-Blanco, Ángel</au><au>Piñeiro-López, Lucía</au><au>Jiménez-Ruiz, Mónica</au><au>Rols, Stephane</au><au>Real, José Antonio</au><au>Jose Sanchez Costa</au><au>Poloni, Roberta</au><au>Rodríguez-Velamazán, J Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CO and CO2 adsorption mechanism in Fe(pz)[Pt(CN)4] probed by neutron scattering and density-functional theory calculations</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2023-04-26</date><risdate>2023</risdate><volume>25</volume><issue>16</issue><spage>11338</spage><epage>11349</epage><pages>11338-11349</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We study the binding mechanism of CO and CO2 in the porous spin-crossover compound Fe(pz)[Pt(CN)4] by combining neutron diffraction (ND), inelastic neutron scattering (INS) and density–functional theory (DFT) calculations. Two adsorption sites are identified, above the open-metal site and between the pyrazine rings. For CO adsorption, the guest molecules are parallel to the neighboring gas molecules and perpendicular to the pyrazine planes. For CO2, the molecules adsorbed on-top of the open-metal site are perpendicular to the pyrazine rings and those between the pyrazines are almost parallel to them. These configurations are consistent with the INS data, which are in good agreement with the computed generalized phonon density of states. The most relevant signatures of the binding occur in the spectral region around 100 cm−1 and 400 cm−1. The first peak blue-shifts for both CO and CO2 adsorption, while the second red-shifts for CO and remains nearly unchanged for CO2. These spectral changes depend both from steric effects and the nature of the interaction. The interpretation of the INS data as supported by the computed binding energy and the molecular orbital analysis are consistent with a physisorption mechanism for both gases. This work shows the strength of the combination of neutron techniques and DFT calculations to characterize in detail the gas adsorption mechanism in this type of materials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3cp00670k</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2023-04, Vol.25 (16), p.11338-11349 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_2795358576 |
source | Royal Society of Chemistry |
subjects | Adsorption Carbon dioxide Carbon monoxide Computation Density functional theory Inelastic scattering Mathematical analysis Molecular orbitals Neutron diffraction Neutron scattering Neutrons Pyrazines Steric effects |
title | CO and CO2 adsorption mechanism in Fe(pz)[Pt(CN)4] probed by neutron scattering and density-functional theory calculations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A25%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CO%20and%20CO2%20adsorption%20mechanism%20in%20Fe(pz)%5BPt(CN)4%5D%20probed%20by%20neutron%20scattering%20and%20density-functional%20theory%20calculations&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Fern%C3%A1ndez-Blanco,%20%C3%81ngel&rft.date=2023-04-26&rft.volume=25&rft.issue=16&rft.spage=11338&rft.epage=11349&rft.pages=11338-11349&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp00670k&rft_dat=%3Cproquest%3E2806329395%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-9aa55e9d2af9b2d6a8896ca65ec6a14ef13d2cb304f82f0f1bd162b9a8e6a4a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2806329395&rft_id=info:pmid/&rfr_iscdi=true |