Loading…
Random walks with similar transition probabilities
We consider random walks on the nonnegative integers with a possible absorbing state at −1. A random walk X̃ is called α-similar to a random walk X if there exist constants Cij such that for the corresponding n-step transition probabilities P̃ij(n)=α−nCijPij(n), i,j⩾0, hold. We give necessary and su...
Saved in:
Published in: | Journal of computational and applied mathematics 2003-04, Vol.153 (1-2), p.423-432 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-f167a3a8e1db9bdc2bc4a540f48a0fb1e1137706b557d909f6ee1b11996f2bf53 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-f167a3a8e1db9bdc2bc4a540f48a0fb1e1137706b557d909f6ee1b11996f2bf53 |
container_end_page | 432 |
container_issue | 1-2 |
container_start_page | 423 |
container_title | Journal of computational and applied mathematics |
container_volume | 153 |
creator | Schiefermayr, Klaus |
description | We consider random walks on the nonnegative integers with a possible absorbing state at −1. A random walk X̃ is called α-similar to a random walk X if there exist constants Cij such that for the corresponding n-step transition probabilities P̃ij(n)=α−nCijPij(n), i,j⩾0, hold. We give necessary and sufficient conditions for the α-similarity of two random walks both in terms of the parameters and in terms of the corresponding spectral measures which appear in the spectral representation of the n-step transition probabilities developed by Karlin and McGregor. |
doi_str_mv | 10.1016/S0377-0427(02)00640-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27960531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042702006404</els_id><sourcerecordid>27960531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-f167a3a8e1db9bdc2bc4a540f48a0fb1e1137706b557d909f6ee1b11996f2bf53</originalsourceid><addsrcrecordid>eNqFkFtLxDAQhYMouK7-BKEvij5UZ9o0aZ5EFm-wIHh5DkmaYLTbrknXxX9v9oI--jQMfGfOnEPIMcIFArLLZyg5z4EW_AyKcwBGIac7ZIQ1FzlyXu-S0S-yTw5ifIdECaQjUjypruln2VK1HzFb-uEti37mWxWyIagu-sH3XTYPvVbat2mz8ZDsOdVGe7SdY_J6e_Myuc-nj3cPk-tpbkpWD7lDxlWpaouNFroxhTZUVRQcrRU4jRYx_QRMVxVvBAjHrEWNKARzhXZVOSanm7vJ_XNh4yBnPhrbtqqz_SLKggsGVYkJrDagCX2MwTo5D36mwrdEkKuG5LohuYovoZDrhiRNupOtgYpGtS7lNT7-iSlHoNXq_tWGsyntl7dBRuNtZ2zjgzWDbHr_j9MPqoV6Pg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27960531</pqid></control><display><type>article</type><title>Random walks with similar transition probabilities</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Schiefermayr, Klaus</creator><creatorcontrib>Schiefermayr, Klaus</creatorcontrib><description>We consider random walks on the nonnegative integers with a possible absorbing state at −1. A random walk X̃ is called α-similar to a random walk X if there exist constants Cij such that for the corresponding n-step transition probabilities P̃ij(n)=α−nCijPij(n), i,j⩾0, hold. We give necessary and sufficient conditions for the α-similarity of two random walks both in terms of the parameters and in terms of the corresponding spectral measures which appear in the spectral representation of the n-step transition probabilities developed by Karlin and McGregor.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/S0377-0427(02)00640-4</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Exact sciences and technology ; Markov processes ; Mathematical analysis ; Mathematics ; Probability and statistics ; Probability theory and stochastic processes ; Random walk measures ; Random walk polynomials ; Sciences and techniques of general use ; Similar random walks ; Special functions ; Transition probabilities</subject><ispartof>Journal of computational and applied mathematics, 2003-04, Vol.153 (1-2), p.423-432</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-f167a3a8e1db9bdc2bc4a540f48a0fb1e1137706b557d909f6ee1b11996f2bf53</citedby><cites>FETCH-LOGICAL-c368t-f167a3a8e1db9bdc2bc4a540f48a0fb1e1137706b557d909f6ee1b11996f2bf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23929,23930,25139,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14710451$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schiefermayr, Klaus</creatorcontrib><title>Random walks with similar transition probabilities</title><title>Journal of computational and applied mathematics</title><description>We consider random walks on the nonnegative integers with a possible absorbing state at −1. A random walk X̃ is called α-similar to a random walk X if there exist constants Cij such that for the corresponding n-step transition probabilities P̃ij(n)=α−nCijPij(n), i,j⩾0, hold. We give necessary and sufficient conditions for the α-similarity of two random walks both in terms of the parameters and in terms of the corresponding spectral measures which appear in the spectral representation of the n-step transition probabilities developed by Karlin and McGregor.</description><subject>Exact sciences and technology</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Random walk measures</subject><subject>Random walk polynomials</subject><subject>Sciences and techniques of general use</subject><subject>Similar random walks</subject><subject>Special functions</subject><subject>Transition probabilities</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLxDAQhYMouK7-BKEvij5UZ9o0aZ5EFm-wIHh5DkmaYLTbrknXxX9v9oI--jQMfGfOnEPIMcIFArLLZyg5z4EW_AyKcwBGIac7ZIQ1FzlyXu-S0S-yTw5ifIdECaQjUjypruln2VK1HzFb-uEti37mWxWyIagu-sH3XTYPvVbat2mz8ZDsOdVGe7SdY_J6e_Myuc-nj3cPk-tpbkpWD7lDxlWpaouNFroxhTZUVRQcrRU4jRYx_QRMVxVvBAjHrEWNKARzhXZVOSanm7vJ_XNh4yBnPhrbtqqz_SLKggsGVYkJrDagCX2MwTo5D36mwrdEkKuG5LohuYovoZDrhiRNupOtgYpGtS7lNT7-iSlHoNXq_tWGsyntl7dBRuNtZ2zjgzWDbHr_j9MPqoV6Pg</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>Schiefermayr, Klaus</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20030401</creationdate><title>Random walks with similar transition probabilities</title><author>Schiefermayr, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-f167a3a8e1db9bdc2bc4a540f48a0fb1e1137706b557d909f6ee1b11996f2bf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Exact sciences and technology</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Random walk measures</topic><topic>Random walk polynomials</topic><topic>Sciences and techniques of general use</topic><topic>Similar random walks</topic><topic>Special functions</topic><topic>Transition probabilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schiefermayr, Klaus</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schiefermayr, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random walks with similar transition probabilities</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2003-04-01</date><risdate>2003</risdate><volume>153</volume><issue>1-2</issue><spage>423</spage><epage>432</epage><pages>423-432</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>We consider random walks on the nonnegative integers with a possible absorbing state at −1. A random walk X̃ is called α-similar to a random walk X if there exist constants Cij such that for the corresponding n-step transition probabilities P̃ij(n)=α−nCijPij(n), i,j⩾0, hold. We give necessary and sufficient conditions for the α-similarity of two random walks both in terms of the parameters and in terms of the corresponding spectral measures which appear in the spectral representation of the n-step transition probabilities developed by Karlin and McGregor.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0377-0427(02)00640-4</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2003-04, Vol.153 (1-2), p.423-432 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_27960531 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Exact sciences and technology Markov processes Mathematical analysis Mathematics Probability and statistics Probability theory and stochastic processes Random walk measures Random walk polynomials Sciences and techniques of general use Similar random walks Special functions Transition probabilities |
title | Random walks with similar transition probabilities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A25%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20walks%20with%20similar%20transition%20probabilities&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Schiefermayr,%20Klaus&rft.date=2003-04-01&rft.volume=153&rft.issue=1-2&rft.spage=423&rft.epage=432&rft.pages=423-432&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/S0377-0427(02)00640-4&rft_dat=%3Cproquest_cross%3E27960531%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-f167a3a8e1db9bdc2bc4a540f48a0fb1e1137706b557d909f6ee1b11996f2bf53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27960531&rft_id=info:pmid/&rfr_iscdi=true |