Loading…

Random walks with similar transition probabilities

We consider random walks on the nonnegative integers with a possible absorbing state at −1. A random walk X̃ is called α-similar to a random walk X if there exist constants Cij such that for the corresponding n-step transition probabilities P̃ij(n)=α−nCijPij(n), i,j⩾0, hold. We give necessary and su...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics 2003-04, Vol.153 (1-2), p.423-432
Main Author: Schiefermayr, Klaus
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-f167a3a8e1db9bdc2bc4a540f48a0fb1e1137706b557d909f6ee1b11996f2bf53
cites cdi_FETCH-LOGICAL-c368t-f167a3a8e1db9bdc2bc4a540f48a0fb1e1137706b557d909f6ee1b11996f2bf53
container_end_page 432
container_issue 1-2
container_start_page 423
container_title Journal of computational and applied mathematics
container_volume 153
creator Schiefermayr, Klaus
description We consider random walks on the nonnegative integers with a possible absorbing state at −1. A random walk X̃ is called α-similar to a random walk X if there exist constants Cij such that for the corresponding n-step transition probabilities P̃ij(n)=α−nCijPij(n), i,j⩾0, hold. We give necessary and sufficient conditions for the α-similarity of two random walks both in terms of the parameters and in terms of the corresponding spectral measures which appear in the spectral representation of the n-step transition probabilities developed by Karlin and McGregor.
doi_str_mv 10.1016/S0377-0427(02)00640-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27960531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042702006404</els_id><sourcerecordid>27960531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-f167a3a8e1db9bdc2bc4a540f48a0fb1e1137706b557d909f6ee1b11996f2bf53</originalsourceid><addsrcrecordid>eNqFkFtLxDAQhYMouK7-BKEvij5UZ9o0aZ5EFm-wIHh5DkmaYLTbrknXxX9v9oI--jQMfGfOnEPIMcIFArLLZyg5z4EW_AyKcwBGIac7ZIQ1FzlyXu-S0S-yTw5ifIdECaQjUjypruln2VK1HzFb-uEti37mWxWyIagu-sH3XTYPvVbat2mz8ZDsOdVGe7SdY_J6e_Myuc-nj3cPk-tpbkpWD7lDxlWpaouNFroxhTZUVRQcrRU4jRYx_QRMVxVvBAjHrEWNKARzhXZVOSanm7vJ_XNh4yBnPhrbtqqz_SLKggsGVYkJrDagCX2MwTo5D36mwrdEkKuG5LohuYovoZDrhiRNupOtgYpGtS7lNT7-iSlHoNXq_tWGsyntl7dBRuNtZ2zjgzWDbHr_j9MPqoV6Pg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27960531</pqid></control><display><type>article</type><title>Random walks with similar transition probabilities</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Schiefermayr, Klaus</creator><creatorcontrib>Schiefermayr, Klaus</creatorcontrib><description>We consider random walks on the nonnegative integers with a possible absorbing state at −1. A random walk X̃ is called α-similar to a random walk X if there exist constants Cij such that for the corresponding n-step transition probabilities P̃ij(n)=α−nCijPij(n), i,j⩾0, hold. We give necessary and sufficient conditions for the α-similarity of two random walks both in terms of the parameters and in terms of the corresponding spectral measures which appear in the spectral representation of the n-step transition probabilities developed by Karlin and McGregor.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/S0377-0427(02)00640-4</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Exact sciences and technology ; Markov processes ; Mathematical analysis ; Mathematics ; Probability and statistics ; Probability theory and stochastic processes ; Random walk measures ; Random walk polynomials ; Sciences and techniques of general use ; Similar random walks ; Special functions ; Transition probabilities</subject><ispartof>Journal of computational and applied mathematics, 2003-04, Vol.153 (1-2), p.423-432</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-f167a3a8e1db9bdc2bc4a540f48a0fb1e1137706b557d909f6ee1b11996f2bf53</citedby><cites>FETCH-LOGICAL-c368t-f167a3a8e1db9bdc2bc4a540f48a0fb1e1137706b557d909f6ee1b11996f2bf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23929,23930,25139,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14710451$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schiefermayr, Klaus</creatorcontrib><title>Random walks with similar transition probabilities</title><title>Journal of computational and applied mathematics</title><description>We consider random walks on the nonnegative integers with a possible absorbing state at −1. A random walk X̃ is called α-similar to a random walk X if there exist constants Cij such that for the corresponding n-step transition probabilities P̃ij(n)=α−nCijPij(n), i,j⩾0, hold. We give necessary and sufficient conditions for the α-similarity of two random walks both in terms of the parameters and in terms of the corresponding spectral measures which appear in the spectral representation of the n-step transition probabilities developed by Karlin and McGregor.</description><subject>Exact sciences and technology</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Random walk measures</subject><subject>Random walk polynomials</subject><subject>Sciences and techniques of general use</subject><subject>Similar random walks</subject><subject>Special functions</subject><subject>Transition probabilities</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLxDAQhYMouK7-BKEvij5UZ9o0aZ5EFm-wIHh5DkmaYLTbrknXxX9v9oI--jQMfGfOnEPIMcIFArLLZyg5z4EW_AyKcwBGIac7ZIQ1FzlyXu-S0S-yTw5ifIdECaQjUjypruln2VK1HzFb-uEti37mWxWyIagu-sH3XTYPvVbat2mz8ZDsOdVGe7SdY_J6e_Myuc-nj3cPk-tpbkpWD7lDxlWpaouNFroxhTZUVRQcrRU4jRYx_QRMVxVvBAjHrEWNKARzhXZVOSanm7vJ_XNh4yBnPhrbtqqz_SLKggsGVYkJrDagCX2MwTo5D36mwrdEkKuG5LohuYovoZDrhiRNupOtgYpGtS7lNT7-iSlHoNXq_tWGsyntl7dBRuNtZ2zjgzWDbHr_j9MPqoV6Pg</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>Schiefermayr, Klaus</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20030401</creationdate><title>Random walks with similar transition probabilities</title><author>Schiefermayr, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-f167a3a8e1db9bdc2bc4a540f48a0fb1e1137706b557d909f6ee1b11996f2bf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Exact sciences and technology</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Random walk measures</topic><topic>Random walk polynomials</topic><topic>Sciences and techniques of general use</topic><topic>Similar random walks</topic><topic>Special functions</topic><topic>Transition probabilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schiefermayr, Klaus</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schiefermayr, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random walks with similar transition probabilities</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2003-04-01</date><risdate>2003</risdate><volume>153</volume><issue>1-2</issue><spage>423</spage><epage>432</epage><pages>423-432</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>We consider random walks on the nonnegative integers with a possible absorbing state at −1. A random walk X̃ is called α-similar to a random walk X if there exist constants Cij such that for the corresponding n-step transition probabilities P̃ij(n)=α−nCijPij(n), i,j⩾0, hold. We give necessary and sufficient conditions for the α-similarity of two random walks both in terms of the parameters and in terms of the corresponding spectral measures which appear in the spectral representation of the n-step transition probabilities developed by Karlin and McGregor.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0377-0427(02)00640-4</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2003-04, Vol.153 (1-2), p.423-432
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_27960531
source ScienceDirect Freedom Collection 2022-2024
subjects Exact sciences and technology
Markov processes
Mathematical analysis
Mathematics
Probability and statistics
Probability theory and stochastic processes
Random walk measures
Random walk polynomials
Sciences and techniques of general use
Similar random walks
Special functions
Transition probabilities
title Random walks with similar transition probabilities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A25%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20walks%20with%20similar%20transition%20probabilities&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Schiefermayr,%20Klaus&rft.date=2003-04-01&rft.volume=153&rft.issue=1-2&rft.spage=423&rft.epage=432&rft.pages=423-432&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/S0377-0427(02)00640-4&rft_dat=%3Cproquest_cross%3E27960531%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-f167a3a8e1db9bdc2bc4a540f48a0fb1e1137706b557d909f6ee1b11996f2bf53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27960531&rft_id=info:pmid/&rfr_iscdi=true