Loading…
Plasticizer phthalate esters degradation with a laccase from Trametes versicolor: effects of TEMPO used as a mediator and estrogenic activity removal
Phthalate esters (PAEs) are toxic and persistent chemicals that are ubiquitous in the environment and have attracted worldwide attention due to their threats to the environment and human health. Dimethyl phthalate (DMP) is a relatively simple structure and one of the most observed PAEs in the enviro...
Saved in:
Published in: | Biodegradation (Dordrecht) 2023-10, Vol.34 (5), p.431-444 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Phthalate esters (PAEs) are toxic and persistent chemicals that are ubiquitous in the environment and have attracted worldwide attention due to their threats to the environment and human health. Dimethyl phthalate (DMP) is a relatively simple structure and one of the most observed PAEs in the environment. This study investigated the degradation of the DMP using
Trametes versicolor
laccase and its laccase-mediator systems. The degradation effect of laccase alone on DMP was poor, while the laccase-mediator systems can effectively enhance the degradation efficiency. Within 24 h, 45% of DMP (25 mg/L) was degraded in the presence of 0.8 U/mL laccase and 0.053 mM 2, 2, 6, 6-tetramethylpiperidine-1-oxyl (TEMPO). A certain concentration (1 mM) of metal ions Al
3+
, Cu
2+
or Ca
2+
can positively promote DMP degradation with the laccase-TEMPO system. Moreover, the structure of PAEs also had a great influence on the degradation efficiency. Higher degradation efficiencies were observed when incubating PAEs with short alkyl side chains by the laccase-TEMPO system compared to that with long alkyl side chains. Additionally, the branched-chain PAEs had a better degradation effect than the straight-chain. The estrogenic activity of the DMP solution after reaction was much smaller than that of the original solution. Finally, transformation products ortho-hydroxylated DMP and phthalic acid were identified by GC–MS and the possible degradation pathway was proposed. This study verifies the feasibility of the laccase-TEMPO system to degrade PAEs and provides a reference for exploring more potential value of laccase. |
---|---|
ISSN: | 0923-9820 1572-9729 |
DOI: | 10.1007/s10532-023-10030-9 |