Loading…
Personalized Audio-Driven 3D Facial Animation Via Style-Content Disentanglement
We present a learning-based approach for generating 3D facial animations with the motion style of a specific subject from arbitrary audio inputs. The subject style is learned from a video clip (1-2 minutes) either downloaded from the Internet or captured through an ordinary camera. Traditional metho...
Saved in:
Published in: | IEEE transactions on visualization and computer graphics 2024-03, Vol.30 (3), p.1-18 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a learning-based approach for generating 3D facial animations with the motion style of a specific subject from arbitrary audio inputs. The subject style is learned from a video clip (1-2 minutes) either downloaded from the Internet or captured through an ordinary camera. Traditional methods often require many hours of the subject's video to learn a robust audio-driven model and are thus unsuitable for this task. Recent research efforts aim to train a model from video collections of a few subjects but ignore the discrimination between the subject style and underlying speech content within facial motions, leading to inaccurate style or articulation. To solve the problem, we propose a novel framework that disentangles subject-specific style and speech content from facial motions. The disentanglement is enabled by two novel training mechanisms. One is two-pass style swapping between two random subjects, and the other is joint training of the decomposition network and audio-to-motion network with a shared decoder. After training, the disentangled style is combined with arbitrary audio inputs to generate stylized audio-driven 3D facial animations. Compared with start-of-the-art methods, our approach achieves better results qualitatively and quantitatively, especially in difficult cases like bilabial plosive and bilabial nasal phonemes. |
---|---|
ISSN: | 1077-2626 1941-0506 |
DOI: | 10.1109/TVCG.2022.3230541 |