Loading…
Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel
Systematic experiments have been performed to investigate the rate sensitivity of deformation in fully dense nanocrystalline Ni using two different experimental techniques: depth-sensing indentation and tensile testing. Results from both types of tests reveal that the strain-rate sensitivity is a st...
Saved in:
Published in: | Acta materialia 2003-10, Vol.51 (17), p.5159-5172 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Systematic experiments have been performed to investigate the rate sensitivity of deformation in fully dense nanocrystalline Ni using two different experimental techniques: depth-sensing indentation and tensile testing. Results from both types of tests reveal that the strain-rate sensitivity is a strong function of grain size. Specifically microcrystalline and ultra-fine crystalline pure Ni, with grain size range of >1 μm and 100–1000 nm, respectively, exhibit essentially rate-independent plastic flow over the range 3×10
−4 to 3×10
−1 s
−1, whereas nanocrystalline pure Ni with a grain size of approximately 40 nm, exhibits marked rate sensitivity over the same range. A simple computational model, predicated on the premise that a rate-sensitive grain-boundary affected zone exists, is shown to explain the observed effect of grain size on the rate-dependent plastic response. |
---|---|
ISSN: | 1359-6454 1873-2453 |
DOI: | 10.1016/S1359-6454(03)00365-3 |