Loading…
Speeding up Scalar Multiplication in Genus 2 Hyperelliptic Curves with Efficient Endomorphisms
This paper proposes an efficient scalar multiplication algorithm for hyperelliptic curves, which is based on the idea that efficient endomorphisms can be used to speed up scalar multiplication. We first present a new Frobenius expansion method for special hyperelliptic curves that have Gallant‐Lambe...
Saved in:
Published in: | ETRI journal 2005-10, Vol.27 (5), p.617-627 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3227-8c8db1b912764a1065f416cf2ff9204de9a8da0fef7be2606cd7cf5c166417453 |
container_end_page | 627 |
container_issue | 5 |
container_start_page | 617 |
container_title | ETRI journal |
container_volume | 27 |
creator | Park, Tae Jun Lee, Mun‐Kyu Park, Kunsoo Chung, Kyo Il |
description | This paper proposes an efficient scalar multiplication algorithm for hyperelliptic curves, which is based on the idea that efficient endomorphisms can be used to speed up scalar multiplication. We first present a new Frobenius expansion method for special hyperelliptic curves that have Gallant‐Lambert‐Vanstone (GLV) endomorphisms. To compute kD for an integer k and a divisor D, we expand the integer k by the Frobenius endomorphism and the GLV endomorphism. We also present improved scalar multiplication algorithms that use the new expansion method. By our new expansion method, the number of divisor doublings in a scalar multiplication is reduced to a quarter, while the number of divisor additions is almost the same. Our experiments show that the overall throughputs of scalar multiplications are increased by 15.6 to 28.3 % over the previous algorithms when the algorithms are implemented over finite fields of odd characteristics. |
doi_str_mv | 10.4218/etrij.05.0104.0171 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27981473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27981473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3227-8c8db1b912764a1065f416cf2ff9204de9a8da0fef7be2606cd7cf5c166417453</originalsourceid><addsrcrecordid>eNqNkL1OwzAUhS0EEqXwAkye2FJsx7GTEVWBIhUh0bJiuc41dZUfYydUfXtSygOw3Luc7-joQ-iWkhlnNL-HPrjdjGQzQgkfj6RnaMJYmiYyZeIcTShjWSK4SC_RVYw7QhjhWT5BHysPULn2Ew8er4yudcAvQ907Xzuje9e12LX4CdohYoYXBw8B6tr53hk8H8I3RLx3_RaX1jrjoO1x2VZd0wW_dbGJ1-jC6jrCzd-fovfHcj1fJMvXp-f5wzIxKWMyyU1ebeimoEwKrikRmeVUGMusLcahFRQ6rzSxYOUGmCDCVNLYzFAhOJU8S6fo7tTrQ_c1QOxV46IZl-oWuiEqJouccpmOQXYKmtDFGMAqH1yjw0FRoo4q1a9KRTJ1VKmOKkcoP0F7V8PhH4Qq12-MCCrTHy0Ieuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27981473</pqid></control><display><type>article</type><title>Speeding up Scalar Multiplication in Genus 2 Hyperelliptic Curves with Efficient Endomorphisms</title><source>Alma/SFX Local Collection</source><creator>Park, Tae Jun ; Lee, Mun‐Kyu ; Park, Kunsoo ; Chung, Kyo Il</creator><creatorcontrib>Park, Tae Jun ; Lee, Mun‐Kyu ; Park, Kunsoo ; Chung, Kyo Il</creatorcontrib><description>This paper proposes an efficient scalar multiplication algorithm for hyperelliptic curves, which is based on the idea that efficient endomorphisms can be used to speed up scalar multiplication. We first present a new Frobenius expansion method for special hyperelliptic curves that have Gallant‐Lambert‐Vanstone (GLV) endomorphisms. To compute kD for an integer k and a divisor D, we expand the integer k by the Frobenius endomorphism and the GLV endomorphism. We also present improved scalar multiplication algorithms that use the new expansion method. By our new expansion method, the number of divisor doublings in a scalar multiplication is reduced to a quarter, while the number of divisor additions is almost the same. Our experiments show that the overall throughputs of scalar multiplications are increased by 15.6 to 28.3 % over the previous algorithms when the algorithms are implemented over finite fields of odd characteristics.</description><identifier>ISSN: 1225-6463</identifier><identifier>EISSN: 2233-7326</identifier><identifier>DOI: 10.4218/etrij.05.0104.0171</identifier><language>eng</language><subject>Frobenius expansion ; Hyperelliptic curve ; scalar multiplication</subject><ispartof>ETRI journal, 2005-10, Vol.27 (5), p.617-627</ispartof><rights>2005 ETRI</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3227-8c8db1b912764a1065f416cf2ff9204de9a8da0fef7be2606cd7cf5c166417453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Park, Tae Jun</creatorcontrib><creatorcontrib>Lee, Mun‐Kyu</creatorcontrib><creatorcontrib>Park, Kunsoo</creatorcontrib><creatorcontrib>Chung, Kyo Il</creatorcontrib><title>Speeding up Scalar Multiplication in Genus 2 Hyperelliptic Curves with Efficient Endomorphisms</title><title>ETRI journal</title><description>This paper proposes an efficient scalar multiplication algorithm for hyperelliptic curves, which is based on the idea that efficient endomorphisms can be used to speed up scalar multiplication. We first present a new Frobenius expansion method for special hyperelliptic curves that have Gallant‐Lambert‐Vanstone (GLV) endomorphisms. To compute kD for an integer k and a divisor D, we expand the integer k by the Frobenius endomorphism and the GLV endomorphism. We also present improved scalar multiplication algorithms that use the new expansion method. By our new expansion method, the number of divisor doublings in a scalar multiplication is reduced to a quarter, while the number of divisor additions is almost the same. Our experiments show that the overall throughputs of scalar multiplications are increased by 15.6 to 28.3 % over the previous algorithms when the algorithms are implemented over finite fields of odd characteristics.</description><subject>Frobenius expansion</subject><subject>Hyperelliptic curve</subject><subject>scalar multiplication</subject><issn>1225-6463</issn><issn>2233-7326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkL1OwzAUhS0EEqXwAkye2FJsx7GTEVWBIhUh0bJiuc41dZUfYydUfXtSygOw3Luc7-joQ-iWkhlnNL-HPrjdjGQzQgkfj6RnaMJYmiYyZeIcTShjWSK4SC_RVYw7QhjhWT5BHysPULn2Ew8er4yudcAvQ907Xzuje9e12LX4CdohYoYXBw8B6tr53hk8H8I3RLx3_RaX1jrjoO1x2VZd0wW_dbGJ1-jC6jrCzd-fovfHcj1fJMvXp-f5wzIxKWMyyU1ebeimoEwKrikRmeVUGMusLcahFRQ6rzSxYOUGmCDCVNLYzFAhOJU8S6fo7tTrQ_c1QOxV46IZl-oWuiEqJouccpmOQXYKmtDFGMAqH1yjw0FRoo4q1a9KRTJ1VKmOKkcoP0F7V8PhH4Qq12-MCCrTHy0Ieuw</recordid><startdate>200510</startdate><enddate>200510</enddate><creator>Park, Tae Jun</creator><creator>Lee, Mun‐Kyu</creator><creator>Park, Kunsoo</creator><creator>Chung, Kyo Il</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200510</creationdate><title>Speeding up Scalar Multiplication in Genus 2 Hyperelliptic Curves with Efficient Endomorphisms</title><author>Park, Tae Jun ; Lee, Mun‐Kyu ; Park, Kunsoo ; Chung, Kyo Il</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3227-8c8db1b912764a1065f416cf2ff9204de9a8da0fef7be2606cd7cf5c166417453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Frobenius expansion</topic><topic>Hyperelliptic curve</topic><topic>scalar multiplication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Tae Jun</creatorcontrib><creatorcontrib>Lee, Mun‐Kyu</creatorcontrib><creatorcontrib>Park, Kunsoo</creatorcontrib><creatorcontrib>Chung, Kyo Il</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ETRI journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Tae Jun</au><au>Lee, Mun‐Kyu</au><au>Park, Kunsoo</au><au>Chung, Kyo Il</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Speeding up Scalar Multiplication in Genus 2 Hyperelliptic Curves with Efficient Endomorphisms</atitle><jtitle>ETRI journal</jtitle><date>2005-10</date><risdate>2005</risdate><volume>27</volume><issue>5</issue><spage>617</spage><epage>627</epage><pages>617-627</pages><issn>1225-6463</issn><eissn>2233-7326</eissn><abstract>This paper proposes an efficient scalar multiplication algorithm for hyperelliptic curves, which is based on the idea that efficient endomorphisms can be used to speed up scalar multiplication. We first present a new Frobenius expansion method for special hyperelliptic curves that have Gallant‐Lambert‐Vanstone (GLV) endomorphisms. To compute kD for an integer k and a divisor D, we expand the integer k by the Frobenius endomorphism and the GLV endomorphism. We also present improved scalar multiplication algorithms that use the new expansion method. By our new expansion method, the number of divisor doublings in a scalar multiplication is reduced to a quarter, while the number of divisor additions is almost the same. Our experiments show that the overall throughputs of scalar multiplications are increased by 15.6 to 28.3 % over the previous algorithms when the algorithms are implemented over finite fields of odd characteristics.</abstract><doi>10.4218/etrij.05.0104.0171</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1225-6463 |
ispartof | ETRI journal, 2005-10, Vol.27 (5), p.617-627 |
issn | 1225-6463 2233-7326 |
language | eng |
recordid | cdi_proquest_miscellaneous_27981473 |
source | Alma/SFX Local Collection |
subjects | Frobenius expansion Hyperelliptic curve scalar multiplication |
title | Speeding up Scalar Multiplication in Genus 2 Hyperelliptic Curves with Efficient Endomorphisms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A33%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Speeding%20up%20Scalar%20Multiplication%20in%20Genus%202%20Hyperelliptic%20Curves%20with%20Efficient%20Endomorphisms&rft.jtitle=ETRI%20journal&rft.au=Park,%20Tae%20Jun&rft.date=2005-10&rft.volume=27&rft.issue=5&rft.spage=617&rft.epage=627&rft.pages=617-627&rft.issn=1225-6463&rft.eissn=2233-7326&rft_id=info:doi/10.4218/etrij.05.0104.0171&rft_dat=%3Cproquest_cross%3E27981473%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3227-8c8db1b912764a1065f416cf2ff9204de9a8da0fef7be2606cd7cf5c166417453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27981473&rft_id=info:pmid/&rfr_iscdi=true |