Loading…
Consformer: consciousness detection using transformer networks with correntropy-based measures
Consciousness detection is important in diagnosis and treatment of disorders of consciousness (DOC). Recent studies have demonstrated that electroencephalography (EEG) signals contain effective information for consciousness state evaluation. We propose two novel EEG measures: the spatiotemporal corr...
Saved in:
Published in: | IEEE transactions on neural systems and rehabilitation engineering 2023-01, Vol.31, p.1-1 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c462t-19386b76013ee4d3fa2c6aec3d20f8e11136990216f50fdb6404f5efae4258fe3 |
---|---|
cites | cdi_FETCH-LOGICAL-c462t-19386b76013ee4d3fa2c6aec3d20f8e11136990216f50fdb6404f5efae4258fe3 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on neural systems and rehabilitation engineering |
container_volume | 31 |
creator | Sun, Xuyun Qi, Yu Ma, Xiulin Xu, Chuan Luo, Benyan Pan, Gang |
description | Consciousness detection is important in diagnosis and treatment of disorders of consciousness (DOC). Recent studies have demonstrated that electroencephalography (EEG) signals contain effective information for consciousness state evaluation. We propose two novel EEG measures: the spatiotemporal correntropy and the neuromodulation intensity, to reflect the temporal-spatial complexity in brain signals for consciousness detection. Then, we build a pool of EEG measures with different spectral, complexity and connectivity features, and propose Consformer, a transformer network to learn an adaptive optimization of features for different subjects with the attention mechanism. Experiments are carried out using a large dataset of 280 resting-state EEG recordings of DOC patients. Consformer discriminates minimally conscious state (MCS) from vegetative state (VS) with an accuracy of 85.73% and an F1-score of 86.95%, which achieves the state-of-the-art performance. |
doi_str_mv | 10.1109/TNSRE.2023.3250958 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2798708060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10057051</ieee_id><doaj_id>oai_doaj_org_article_1fac39f9fa284c118ff6247162780387</doaj_id><sourcerecordid>2798708060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-19386b76013ee4d3fa2c6aec3d20f8e11136990216f50fdb6404f5efae4258fe3</originalsourceid><addsrcrecordid>eNpdkV1rFDEUhoMotlb_gIgM9MabWU--M97J0mqhVNB6a8hmTmrWncmazFD675vtbot4lUN43vd8vIS8pbCgFLqP11c_vp8tGDC-4ExCJ80zckylNC0wCs93NRet4AyOyKtS1gBUK6lfkiOugRlQ5pj8WqaxhJQHzJ8aX2sf01xGLKXpcUI_xTQ2c4njTTNl94g2I063Kf8pzW2cflddzjhOOW3v2pUr2DcDujJnLK_Ji-A2Bd8c3hPy8_zsevm1vfz25WL5-bL1QrGppR03aqUVUI4oeh4c88qh5z2DYJBSylXX1a1UkBD6lRIggsTgUDBpAvITcrH37ZNb222Og8t3NrloHz5SvrEuT9Fv0NLgPO9CV3sY4Sk1ISgmNFVMG-BGV68Pe69tTn9nLJMdYvG42bgR620s053RUM8HFT39D12nOY91U8sM15Rz0clKsT3lcyolY3gakILdJWkfkrS7JO0hySp6f7CeVwP2T5LH6Crwbg9ERPzHEaQGSfk9wNajAA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2837133495</pqid></control><display><type>article</type><title>Consformer: consciousness detection using transformer networks with correntropy-based measures</title><source>Alma/SFX Local Collection</source><creator>Sun, Xuyun ; Qi, Yu ; Ma, Xiulin ; Xu, Chuan ; Luo, Benyan ; Pan, Gang</creator><creatorcontrib>Sun, Xuyun ; Qi, Yu ; Ma, Xiulin ; Xu, Chuan ; Luo, Benyan ; Pan, Gang</creatorcontrib><description>Consciousness detection is important in diagnosis and treatment of disorders of consciousness (DOC). Recent studies have demonstrated that electroencephalography (EEG) signals contain effective information for consciousness state evaluation. We propose two novel EEG measures: the spatiotemporal correntropy and the neuromodulation intensity, to reflect the temporal-spatial complexity in brain signals for consciousness detection. Then, we build a pool of EEG measures with different spectral, complexity and connectivity features, and propose Consformer, a transformer network to learn an adaptive optimization of features for different subjects with the attention mechanism. Experiments are carried out using a large dataset of 280 resting-state EEG recordings of DOC patients. Consformer discriminates minimally conscious state (MCS) from vegetative state (VS) with an accuracy of 85.73% and an F1-score of 86.95%, which achieves the state-of-the-art performance.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2023.3250958</identifier><identifier>PMID: 37028068</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Brain ; Complexity ; Complexity theory ; Consciousness ; Consciousness detection ; correntropy ; EEG ; electroencephalogram ; Electroencephalography ; Humans ; Learning ; machine learning ; Neural networks ; Neuromodulation ; Optimization ; Persistent Vegetative State - diagnosis ; Probability density function ; Recording ; Spatiotemporal phenomena ; transformer ; Transformers</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2023-01, Vol.31, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-19386b76013ee4d3fa2c6aec3d20f8e11136990216f50fdb6404f5efae4258fe3</citedby><cites>FETCH-LOGICAL-c462t-19386b76013ee4d3fa2c6aec3d20f8e11136990216f50fdb6404f5efae4258fe3</cites><orcidid>0000-0001-8753-0327 ; 0000-0002-9789-8907 ; 0000-0001-6348-926X ; 0000-0002-4049-6181 ; 0000-0002-9892-5778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37028068$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Xuyun</creatorcontrib><creatorcontrib>Qi, Yu</creatorcontrib><creatorcontrib>Ma, Xiulin</creatorcontrib><creatorcontrib>Xu, Chuan</creatorcontrib><creatorcontrib>Luo, Benyan</creatorcontrib><creatorcontrib>Pan, Gang</creatorcontrib><title>Consformer: consciousness detection using transformer networks with correntropy-based measures</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>Consciousness detection is important in diagnosis and treatment of disorders of consciousness (DOC). Recent studies have demonstrated that electroencephalography (EEG) signals contain effective information for consciousness state evaluation. We propose two novel EEG measures: the spatiotemporal correntropy and the neuromodulation intensity, to reflect the temporal-spatial complexity in brain signals for consciousness detection. Then, we build a pool of EEG measures with different spectral, complexity and connectivity features, and propose Consformer, a transformer network to learn an adaptive optimization of features for different subjects with the attention mechanism. Experiments are carried out using a large dataset of 280 resting-state EEG recordings of DOC patients. Consformer discriminates minimally conscious state (MCS) from vegetative state (VS) with an accuracy of 85.73% and an F1-score of 86.95%, which achieves the state-of-the-art performance.</description><subject>Brain</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Consciousness</subject><subject>Consciousness detection</subject><subject>correntropy</subject><subject>EEG</subject><subject>electroencephalogram</subject><subject>Electroencephalography</subject><subject>Humans</subject><subject>Learning</subject><subject>machine learning</subject><subject>Neural networks</subject><subject>Neuromodulation</subject><subject>Optimization</subject><subject>Persistent Vegetative State - diagnosis</subject><subject>Probability density function</subject><subject>Recording</subject><subject>Spatiotemporal phenomena</subject><subject>transformer</subject><subject>Transformers</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpdkV1rFDEUhoMotlb_gIgM9MabWU--M97J0mqhVNB6a8hmTmrWncmazFD675vtbot4lUN43vd8vIS8pbCgFLqP11c_vp8tGDC-4ExCJ80zckylNC0wCs93NRet4AyOyKtS1gBUK6lfkiOugRlQ5pj8WqaxhJQHzJ8aX2sf01xGLKXpcUI_xTQ2c4njTTNl94g2I063Kf8pzW2cflddzjhOOW3v2pUr2DcDujJnLK_Ji-A2Bd8c3hPy8_zsevm1vfz25WL5-bL1QrGppR03aqUVUI4oeh4c88qh5z2DYJBSylXX1a1UkBD6lRIggsTgUDBpAvITcrH37ZNb222Og8t3NrloHz5SvrEuT9Fv0NLgPO9CV3sY4Sk1ISgmNFVMG-BGV68Pe69tTn9nLJMdYvG42bgR620s053RUM8HFT39D12nOY91U8sM15Rz0clKsT3lcyolY3gakILdJWkfkrS7JO0hySp6f7CeVwP2T5LH6Crwbg9ERPzHEaQGSfk9wNajAA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Sun, Xuyun</creator><creator>Qi, Yu</creator><creator>Ma, Xiulin</creator><creator>Xu, Chuan</creator><creator>Luo, Benyan</creator><creator>Pan, Gang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8753-0327</orcidid><orcidid>https://orcid.org/0000-0002-9789-8907</orcidid><orcidid>https://orcid.org/0000-0001-6348-926X</orcidid><orcidid>https://orcid.org/0000-0002-4049-6181</orcidid><orcidid>https://orcid.org/0000-0002-9892-5778</orcidid></search><sort><creationdate>20230101</creationdate><title>Consformer: consciousness detection using transformer networks with correntropy-based measures</title><author>Sun, Xuyun ; Qi, Yu ; Ma, Xiulin ; Xu, Chuan ; Luo, Benyan ; Pan, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-19386b76013ee4d3fa2c6aec3d20f8e11136990216f50fdb6404f5efae4258fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Brain</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Consciousness</topic><topic>Consciousness detection</topic><topic>correntropy</topic><topic>EEG</topic><topic>electroencephalogram</topic><topic>Electroencephalography</topic><topic>Humans</topic><topic>Learning</topic><topic>machine learning</topic><topic>Neural networks</topic><topic>Neuromodulation</topic><topic>Optimization</topic><topic>Persistent Vegetative State - diagnosis</topic><topic>Probability density function</topic><topic>Recording</topic><topic>Spatiotemporal phenomena</topic><topic>transformer</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Xuyun</creatorcontrib><creatorcontrib>Qi, Yu</creatorcontrib><creatorcontrib>Ma, Xiulin</creatorcontrib><creatorcontrib>Xu, Chuan</creatorcontrib><creatorcontrib>Luo, Benyan</creatorcontrib><creatorcontrib>Pan, Gang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Xuyun</au><au>Qi, Yu</au><au>Ma, Xiulin</au><au>Xu, Chuan</au><au>Luo, Benyan</au><au>Pan, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consformer: consciousness detection using transformer networks with correntropy-based measures</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>31</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Consciousness detection is important in diagnosis and treatment of disorders of consciousness (DOC). Recent studies have demonstrated that electroencephalography (EEG) signals contain effective information for consciousness state evaluation. We propose two novel EEG measures: the spatiotemporal correntropy and the neuromodulation intensity, to reflect the temporal-spatial complexity in brain signals for consciousness detection. Then, we build a pool of EEG measures with different spectral, complexity and connectivity features, and propose Consformer, a transformer network to learn an adaptive optimization of features for different subjects with the attention mechanism. Experiments are carried out using a large dataset of 280 resting-state EEG recordings of DOC patients. Consformer discriminates minimally conscious state (MCS) from vegetative state (VS) with an accuracy of 85.73% and an F1-score of 86.95%, which achieves the state-of-the-art performance.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37028068</pmid><doi>10.1109/TNSRE.2023.3250958</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8753-0327</orcidid><orcidid>https://orcid.org/0000-0002-9789-8907</orcidid><orcidid>https://orcid.org/0000-0001-6348-926X</orcidid><orcidid>https://orcid.org/0000-0002-4049-6181</orcidid><orcidid>https://orcid.org/0000-0002-9892-5778</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-4320 |
ispartof | IEEE transactions on neural systems and rehabilitation engineering, 2023-01, Vol.31, p.1-1 |
issn | 1534-4320 1558-0210 |
language | eng |
recordid | cdi_proquest_miscellaneous_2798708060 |
source | Alma/SFX Local Collection |
subjects | Brain Complexity Complexity theory Consciousness Consciousness detection correntropy EEG electroencephalogram Electroencephalography Humans Learning machine learning Neural networks Neuromodulation Optimization Persistent Vegetative State - diagnosis Probability density function Recording Spatiotemporal phenomena transformer Transformers |
title | Consformer: consciousness detection using transformer networks with correntropy-based measures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A34%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consformer:%20consciousness%20detection%20using%20transformer%20networks%20with%20correntropy-based%20measures&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Sun,%20Xuyun&rft.date=2023-01-01&rft.volume=31&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2023.3250958&rft_dat=%3Cproquest_cross%3E2798708060%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-19386b76013ee4d3fa2c6aec3d20f8e11136990216f50fdb6404f5efae4258fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2837133495&rft_id=info:pmid/37028068&rft_ieee_id=10057051&rfr_iscdi=true |