Loading…

Consformer: consciousness detection using transformer networks with correntropy-based measures

Consciousness detection is important in diagnosis and treatment of disorders of consciousness (DOC). Recent studies have demonstrated that electroencephalography (EEG) signals contain effective information for consciousness state evaluation. We propose two novel EEG measures: the spatiotemporal corr...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on neural systems and rehabilitation engineering 2023-01, Vol.31, p.1-1
Main Authors: Sun, Xuyun, Qi, Yu, Ma, Xiulin, Xu, Chuan, Luo, Benyan, Pan, Gang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c462t-19386b76013ee4d3fa2c6aec3d20f8e11136990216f50fdb6404f5efae4258fe3
cites cdi_FETCH-LOGICAL-c462t-19386b76013ee4d3fa2c6aec3d20f8e11136990216f50fdb6404f5efae4258fe3
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on neural systems and rehabilitation engineering
container_volume 31
creator Sun, Xuyun
Qi, Yu
Ma, Xiulin
Xu, Chuan
Luo, Benyan
Pan, Gang
description Consciousness detection is important in diagnosis and treatment of disorders of consciousness (DOC). Recent studies have demonstrated that electroencephalography (EEG) signals contain effective information for consciousness state evaluation. We propose two novel EEG measures: the spatiotemporal correntropy and the neuromodulation intensity, to reflect the temporal-spatial complexity in brain signals for consciousness detection. Then, we build a pool of EEG measures with different spectral, complexity and connectivity features, and propose Consformer, a transformer network to learn an adaptive optimization of features for different subjects with the attention mechanism. Experiments are carried out using a large dataset of 280 resting-state EEG recordings of DOC patients. Consformer discriminates minimally conscious state (MCS) from vegetative state (VS) with an accuracy of 85.73% and an F1-score of 86.95%, which achieves the state-of-the-art performance.
doi_str_mv 10.1109/TNSRE.2023.3250958
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2798708060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10057051</ieee_id><doaj_id>oai_doaj_org_article_1fac39f9fa284c118ff6247162780387</doaj_id><sourcerecordid>2798708060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-19386b76013ee4d3fa2c6aec3d20f8e11136990216f50fdb6404f5efae4258fe3</originalsourceid><addsrcrecordid>eNpdkV1rFDEUhoMotlb_gIgM9MabWU--M97J0mqhVNB6a8hmTmrWncmazFD675vtbot4lUN43vd8vIS8pbCgFLqP11c_vp8tGDC-4ExCJ80zckylNC0wCs93NRet4AyOyKtS1gBUK6lfkiOugRlQ5pj8WqaxhJQHzJ8aX2sf01xGLKXpcUI_xTQ2c4njTTNl94g2I063Kf8pzW2cflddzjhOOW3v2pUr2DcDujJnLK_Ji-A2Bd8c3hPy8_zsevm1vfz25WL5-bL1QrGppR03aqUVUI4oeh4c88qh5z2DYJBSylXX1a1UkBD6lRIggsTgUDBpAvITcrH37ZNb222Og8t3NrloHz5SvrEuT9Fv0NLgPO9CV3sY4Sk1ISgmNFVMG-BGV68Pe69tTn9nLJMdYvG42bgR620s053RUM8HFT39D12nOY91U8sM15Rz0clKsT3lcyolY3gakILdJWkfkrS7JO0hySp6f7CeVwP2T5LH6Crwbg9ERPzHEaQGSfk9wNajAA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2837133495</pqid></control><display><type>article</type><title>Consformer: consciousness detection using transformer networks with correntropy-based measures</title><source>Alma/SFX Local Collection</source><creator>Sun, Xuyun ; Qi, Yu ; Ma, Xiulin ; Xu, Chuan ; Luo, Benyan ; Pan, Gang</creator><creatorcontrib>Sun, Xuyun ; Qi, Yu ; Ma, Xiulin ; Xu, Chuan ; Luo, Benyan ; Pan, Gang</creatorcontrib><description>Consciousness detection is important in diagnosis and treatment of disorders of consciousness (DOC). Recent studies have demonstrated that electroencephalography (EEG) signals contain effective information for consciousness state evaluation. We propose two novel EEG measures: the spatiotemporal correntropy and the neuromodulation intensity, to reflect the temporal-spatial complexity in brain signals for consciousness detection. Then, we build a pool of EEG measures with different spectral, complexity and connectivity features, and propose Consformer, a transformer network to learn an adaptive optimization of features for different subjects with the attention mechanism. Experiments are carried out using a large dataset of 280 resting-state EEG recordings of DOC patients. Consformer discriminates minimally conscious state (MCS) from vegetative state (VS) with an accuracy of 85.73% and an F1-score of 86.95%, which achieves the state-of-the-art performance.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2023.3250958</identifier><identifier>PMID: 37028068</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Brain ; Complexity ; Complexity theory ; Consciousness ; Consciousness detection ; correntropy ; EEG ; electroencephalogram ; Electroencephalography ; Humans ; Learning ; machine learning ; Neural networks ; Neuromodulation ; Optimization ; Persistent Vegetative State - diagnosis ; Probability density function ; Recording ; Spatiotemporal phenomena ; transformer ; Transformers</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2023-01, Vol.31, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-19386b76013ee4d3fa2c6aec3d20f8e11136990216f50fdb6404f5efae4258fe3</citedby><cites>FETCH-LOGICAL-c462t-19386b76013ee4d3fa2c6aec3d20f8e11136990216f50fdb6404f5efae4258fe3</cites><orcidid>0000-0001-8753-0327 ; 0000-0002-9789-8907 ; 0000-0001-6348-926X ; 0000-0002-4049-6181 ; 0000-0002-9892-5778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37028068$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Xuyun</creatorcontrib><creatorcontrib>Qi, Yu</creatorcontrib><creatorcontrib>Ma, Xiulin</creatorcontrib><creatorcontrib>Xu, Chuan</creatorcontrib><creatorcontrib>Luo, Benyan</creatorcontrib><creatorcontrib>Pan, Gang</creatorcontrib><title>Consformer: consciousness detection using transformer networks with correntropy-based measures</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>Consciousness detection is important in diagnosis and treatment of disorders of consciousness (DOC). Recent studies have demonstrated that electroencephalography (EEG) signals contain effective information for consciousness state evaluation. We propose two novel EEG measures: the spatiotemporal correntropy and the neuromodulation intensity, to reflect the temporal-spatial complexity in brain signals for consciousness detection. Then, we build a pool of EEG measures with different spectral, complexity and connectivity features, and propose Consformer, a transformer network to learn an adaptive optimization of features for different subjects with the attention mechanism. Experiments are carried out using a large dataset of 280 resting-state EEG recordings of DOC patients. Consformer discriminates minimally conscious state (MCS) from vegetative state (VS) with an accuracy of 85.73% and an F1-score of 86.95%, which achieves the state-of-the-art performance.</description><subject>Brain</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Consciousness</subject><subject>Consciousness detection</subject><subject>correntropy</subject><subject>EEG</subject><subject>electroencephalogram</subject><subject>Electroencephalography</subject><subject>Humans</subject><subject>Learning</subject><subject>machine learning</subject><subject>Neural networks</subject><subject>Neuromodulation</subject><subject>Optimization</subject><subject>Persistent Vegetative State - diagnosis</subject><subject>Probability density function</subject><subject>Recording</subject><subject>Spatiotemporal phenomena</subject><subject>transformer</subject><subject>Transformers</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpdkV1rFDEUhoMotlb_gIgM9MabWU--M97J0mqhVNB6a8hmTmrWncmazFD675vtbot4lUN43vd8vIS8pbCgFLqP11c_vp8tGDC-4ExCJ80zckylNC0wCs93NRet4AyOyKtS1gBUK6lfkiOugRlQ5pj8WqaxhJQHzJ8aX2sf01xGLKXpcUI_xTQ2c4njTTNl94g2I063Kf8pzW2cflddzjhOOW3v2pUr2DcDujJnLK_Ji-A2Bd8c3hPy8_zsevm1vfz25WL5-bL1QrGppR03aqUVUI4oeh4c88qh5z2DYJBSylXX1a1UkBD6lRIggsTgUDBpAvITcrH37ZNb222Og8t3NrloHz5SvrEuT9Fv0NLgPO9CV3sY4Sk1ISgmNFVMG-BGV68Pe69tTn9nLJMdYvG42bgR620s053RUM8HFT39D12nOY91U8sM15Rz0clKsT3lcyolY3gakILdJWkfkrS7JO0hySp6f7CeVwP2T5LH6Crwbg9ERPzHEaQGSfk9wNajAA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Sun, Xuyun</creator><creator>Qi, Yu</creator><creator>Ma, Xiulin</creator><creator>Xu, Chuan</creator><creator>Luo, Benyan</creator><creator>Pan, Gang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8753-0327</orcidid><orcidid>https://orcid.org/0000-0002-9789-8907</orcidid><orcidid>https://orcid.org/0000-0001-6348-926X</orcidid><orcidid>https://orcid.org/0000-0002-4049-6181</orcidid><orcidid>https://orcid.org/0000-0002-9892-5778</orcidid></search><sort><creationdate>20230101</creationdate><title>Consformer: consciousness detection using transformer networks with correntropy-based measures</title><author>Sun, Xuyun ; Qi, Yu ; Ma, Xiulin ; Xu, Chuan ; Luo, Benyan ; Pan, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-19386b76013ee4d3fa2c6aec3d20f8e11136990216f50fdb6404f5efae4258fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Brain</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Consciousness</topic><topic>Consciousness detection</topic><topic>correntropy</topic><topic>EEG</topic><topic>electroencephalogram</topic><topic>Electroencephalography</topic><topic>Humans</topic><topic>Learning</topic><topic>machine learning</topic><topic>Neural networks</topic><topic>Neuromodulation</topic><topic>Optimization</topic><topic>Persistent Vegetative State - diagnosis</topic><topic>Probability density function</topic><topic>Recording</topic><topic>Spatiotemporal phenomena</topic><topic>transformer</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Xuyun</creatorcontrib><creatorcontrib>Qi, Yu</creatorcontrib><creatorcontrib>Ma, Xiulin</creatorcontrib><creatorcontrib>Xu, Chuan</creatorcontrib><creatorcontrib>Luo, Benyan</creatorcontrib><creatorcontrib>Pan, Gang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Xuyun</au><au>Qi, Yu</au><au>Ma, Xiulin</au><au>Xu, Chuan</au><au>Luo, Benyan</au><au>Pan, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consformer: consciousness detection using transformer networks with correntropy-based measures</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>31</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Consciousness detection is important in diagnosis and treatment of disorders of consciousness (DOC). Recent studies have demonstrated that electroencephalography (EEG) signals contain effective information for consciousness state evaluation. We propose two novel EEG measures: the spatiotemporal correntropy and the neuromodulation intensity, to reflect the temporal-spatial complexity in brain signals for consciousness detection. Then, we build a pool of EEG measures with different spectral, complexity and connectivity features, and propose Consformer, a transformer network to learn an adaptive optimization of features for different subjects with the attention mechanism. Experiments are carried out using a large dataset of 280 resting-state EEG recordings of DOC patients. Consformer discriminates minimally conscious state (MCS) from vegetative state (VS) with an accuracy of 85.73% and an F1-score of 86.95%, which achieves the state-of-the-art performance.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37028068</pmid><doi>10.1109/TNSRE.2023.3250958</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8753-0327</orcidid><orcidid>https://orcid.org/0000-0002-9789-8907</orcidid><orcidid>https://orcid.org/0000-0001-6348-926X</orcidid><orcidid>https://orcid.org/0000-0002-4049-6181</orcidid><orcidid>https://orcid.org/0000-0002-9892-5778</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1534-4320
ispartof IEEE transactions on neural systems and rehabilitation engineering, 2023-01, Vol.31, p.1-1
issn 1534-4320
1558-0210
language eng
recordid cdi_proquest_miscellaneous_2798708060
source Alma/SFX Local Collection
subjects Brain
Complexity
Complexity theory
Consciousness
Consciousness detection
correntropy
EEG
electroencephalogram
Electroencephalography
Humans
Learning
machine learning
Neural networks
Neuromodulation
Optimization
Persistent Vegetative State - diagnosis
Probability density function
Recording
Spatiotemporal phenomena
transformer
Transformers
title Consformer: consciousness detection using transformer networks with correntropy-based measures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A34%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consformer:%20consciousness%20detection%20using%20transformer%20networks%20with%20correntropy-based%20measures&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Sun,%20Xuyun&rft.date=2023-01-01&rft.volume=31&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2023.3250958&rft_dat=%3Cproquest_cross%3E2798708060%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-19386b76013ee4d3fa2c6aec3d20f8e11136990216f50fdb6404f5efae4258fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2837133495&rft_id=info:pmid/37028068&rft_ieee_id=10057051&rfr_iscdi=true