Loading…
An automated drug dependence detection system based on EEG
Substance abuse causes damage to the brain structure and function. This research aim is to design an automated drug dependence detection system based on EEG signals in a Multidrug (MD) abuser. EEG signals were recorded from participants categorized into MD-dependents (n = 10) and Healthy Control (HC...
Saved in:
Published in: | Computers in biology and medicine 2023-05, Vol.158, p.106853-106853, Article 106853 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-8f9e2f7d9c0647473bb2541a1195a032cfa60ea8cb3a80d709ba3d252b3e05913 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-8f9e2f7d9c0647473bb2541a1195a032cfa60ea8cb3a80d709ba3d252b3e05913 |
container_end_page | 106853 |
container_issue | |
container_start_page | 106853 |
container_title | Computers in biology and medicine |
container_volume | 158 |
creator | Marvi, Nasimeh Haddadnia, Javad Fayyazi Bordbar, Mohammad Reza |
description | Substance abuse causes damage to the brain structure and function. This research aim is to design an automated drug dependence detection system based on EEG signals in a Multidrug (MD) abuser.
EEG signals were recorded from participants categorized into MD-dependents (n = 10) and Healthy Control (HC) (n = 12). The Recurrence Plot investigates the dynamic characteristics of the EEG signal. The entropy index (ENTR) measured from the Recurrence Quantification Analysis was considered the complexity index of the delta, theta, alpha, beta, gamma, and all-band EEG signals. Statistical analysis was performed by t-test. The support vector machine technique was used for the data classification.
The results show decreased ENTR indices in the delta, alpha, beta, gamma, and all-band EEG signal and increased theta band in MD abusers compared to the HC group. That indicated the reduction of complexity in the delta, alpha, beta, gamma, and all-band EEG signals in the MD group. Additionally, the SVM classifier distinguished the MD group from the HC group with 90% accuracy, 89.36% sensitivity, 90.7% specificity, and 89.8% F1 score.
The nonlinear analysis of brain data was used to build an automatic diagnostic aid system that could identify HC people apart from those who abuse MD.
•Investigate the change in brain signal complexity with the Recurrence Quantification Analysis method.•A decrease in brain complexity in the multidrug dependence group compared to the Healthy Control.•Design an automated drug dependence detection system for multidrug dependence detection. |
doi_str_mv | 10.1016/j.compbiomed.2023.106853 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2798709864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482523003189</els_id><sourcerecordid>2798709864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-8f9e2f7d9c0647473bb2541a1195a032cfa60ea8cb3a80d709ba3d252b3e05913</originalsourceid><addsrcrecordid>eNqFkM9LwzAUx4Mobk7_BSl48dL58qNt6m2OOYWBFz2HNHmVjrWZSSv435syh-DF00tePt_3woeQhMKcAs3vtnPj2n3VuBbtnAHjsZ3LjJ-QKZVFmULGxSmZAlBIhWTZhFyEsAUAARzOyYQXsbJcTMn9okv00LtW92gT64f3xOIeO4udwXjs0fSN65LwFXpsk0qHiMX7arW-JGe13gW8-qkz8va4el0-pZuX9fNysUmNANansi6R1YUtDeSiEAWvKpYJqiktMw2cmVrngFqaimsJtoCy0tyyjFUcISspn5Hbw9y9dx8Dhl61TTC42-kO3RAUK0oZUzIXEb35g27d4Lv4O8Uk0DLPCzkOlAfKeBeCx1rtfdNq_6UoqNGv2qpfv2r0qw5-Y_T6Z8FQjW_H4FFoBB4OAEYjnw16FUwzurSNjyqVdc3_W74BE6CObQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2801966781</pqid></control><display><type>article</type><title>An automated drug dependence detection system based on EEG</title><source>ScienceDirect Journals</source><creator>Marvi, Nasimeh ; Haddadnia, Javad ; Fayyazi Bordbar, Mohammad Reza</creator><creatorcontrib>Marvi, Nasimeh ; Haddadnia, Javad ; Fayyazi Bordbar, Mohammad Reza</creatorcontrib><description>Substance abuse causes damage to the brain structure and function. This research aim is to design an automated drug dependence detection system based on EEG signals in a Multidrug (MD) abuser.
EEG signals were recorded from participants categorized into MD-dependents (n = 10) and Healthy Control (HC) (n = 12). The Recurrence Plot investigates the dynamic characteristics of the EEG signal. The entropy index (ENTR) measured from the Recurrence Quantification Analysis was considered the complexity index of the delta, theta, alpha, beta, gamma, and all-band EEG signals. Statistical analysis was performed by t-test. The support vector machine technique was used for the data classification.
The results show decreased ENTR indices in the delta, alpha, beta, gamma, and all-band EEG signal and increased theta band in MD abusers compared to the HC group. That indicated the reduction of complexity in the delta, alpha, beta, gamma, and all-band EEG signals in the MD group. Additionally, the SVM classifier distinguished the MD group from the HC group with 90% accuracy, 89.36% sensitivity, 90.7% specificity, and 89.8% F1 score.
The nonlinear analysis of brain data was used to build an automatic diagnostic aid system that could identify HC people apart from those who abuse MD.
•Investigate the change in brain signal complexity with the Recurrence Quantification Analysis method.•A decrease in brain complexity in the multidrug dependence group compared to the Healthy Control.•Design an automated drug dependence detection system for multidrug dependence detection.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2023.106853</identifier><identifier>PMID: 37030264</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Accuracy ; Algorithms ; Biomarkers ; Brain damage ; Brain injury ; Brain research ; Classification ; Complexity ; Data analysis ; Dependence ; Design ; Diagnostic aid system ; Drug abuse ; Drug dependence ; Drug development ; Dynamic characteristics ; EEG ; Electroencephalography ; Electroencephalography - methods ; ENTR ; Entropy ; Functional anatomy ; Heroin ; Humans ; Medical diagnosis ; Multidrug abusers ; Neural networks ; Nonlinear analysis ; Recording equipment ; Recurrence quantification analysis ; Signal Processing, Computer-Assisted ; Statistical analysis ; Structure-function relationships ; Support Vector Machine ; Support vector machines ; Time series ; Urine</subject><ispartof>Computers in biology and medicine, 2023-05, Vol.158, p.106853-106853, Article 106853</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><rights>2023. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-8f9e2f7d9c0647473bb2541a1195a032cfa60ea8cb3a80d709ba3d252b3e05913</citedby><cites>FETCH-LOGICAL-c402t-8f9e2f7d9c0647473bb2541a1195a032cfa60ea8cb3a80d709ba3d252b3e05913</cites><orcidid>0000-0001-8028-985X ; 0000-0003-4736-455X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37030264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marvi, Nasimeh</creatorcontrib><creatorcontrib>Haddadnia, Javad</creatorcontrib><creatorcontrib>Fayyazi Bordbar, Mohammad Reza</creatorcontrib><title>An automated drug dependence detection system based on EEG</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Substance abuse causes damage to the brain structure and function. This research aim is to design an automated drug dependence detection system based on EEG signals in a Multidrug (MD) abuser.
EEG signals were recorded from participants categorized into MD-dependents (n = 10) and Healthy Control (HC) (n = 12). The Recurrence Plot investigates the dynamic characteristics of the EEG signal. The entropy index (ENTR) measured from the Recurrence Quantification Analysis was considered the complexity index of the delta, theta, alpha, beta, gamma, and all-band EEG signals. Statistical analysis was performed by t-test. The support vector machine technique was used for the data classification.
The results show decreased ENTR indices in the delta, alpha, beta, gamma, and all-band EEG signal and increased theta band in MD abusers compared to the HC group. That indicated the reduction of complexity in the delta, alpha, beta, gamma, and all-band EEG signals in the MD group. Additionally, the SVM classifier distinguished the MD group from the HC group with 90% accuracy, 89.36% sensitivity, 90.7% specificity, and 89.8% F1 score.
The nonlinear analysis of brain data was used to build an automatic diagnostic aid system that could identify HC people apart from those who abuse MD.
•Investigate the change in brain signal complexity with the Recurrence Quantification Analysis method.•A decrease in brain complexity in the multidrug dependence group compared to the Healthy Control.•Design an automated drug dependence detection system for multidrug dependence detection.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Biomarkers</subject><subject>Brain damage</subject><subject>Brain injury</subject><subject>Brain research</subject><subject>Classification</subject><subject>Complexity</subject><subject>Data analysis</subject><subject>Dependence</subject><subject>Design</subject><subject>Diagnostic aid system</subject><subject>Drug abuse</subject><subject>Drug dependence</subject><subject>Drug development</subject><subject>Dynamic characteristics</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>ENTR</subject><subject>Entropy</subject><subject>Functional anatomy</subject><subject>Heroin</subject><subject>Humans</subject><subject>Medical diagnosis</subject><subject>Multidrug abusers</subject><subject>Neural networks</subject><subject>Nonlinear analysis</subject><subject>Recording equipment</subject><subject>Recurrence quantification analysis</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Statistical analysis</subject><subject>Structure-function relationships</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Time series</subject><subject>Urine</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAUx4Mobk7_BSl48dL58qNt6m2OOYWBFz2HNHmVjrWZSSv435syh-DF00tePt_3woeQhMKcAs3vtnPj2n3VuBbtnAHjsZ3LjJ-QKZVFmULGxSmZAlBIhWTZhFyEsAUAARzOyYQXsbJcTMn9okv00LtW92gT64f3xOIeO4udwXjs0fSN65LwFXpsk0qHiMX7arW-JGe13gW8-qkz8va4el0-pZuX9fNysUmNANansi6R1YUtDeSiEAWvKpYJqiktMw2cmVrngFqaimsJtoCy0tyyjFUcISspn5Hbw9y9dx8Dhl61TTC42-kO3RAUK0oZUzIXEb35g27d4Lv4O8Uk0DLPCzkOlAfKeBeCx1rtfdNq_6UoqNGv2qpfv2r0qw5-Y_T6Z8FQjW_H4FFoBB4OAEYjnw16FUwzurSNjyqVdc3_W74BE6CObQ</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Marvi, Nasimeh</creator><creator>Haddadnia, Javad</creator><creator>Fayyazi Bordbar, Mohammad Reza</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8028-985X</orcidid><orcidid>https://orcid.org/0000-0003-4736-455X</orcidid></search><sort><creationdate>202305</creationdate><title>An automated drug dependence detection system based on EEG</title><author>Marvi, Nasimeh ; Haddadnia, Javad ; Fayyazi Bordbar, Mohammad Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-8f9e2f7d9c0647473bb2541a1195a032cfa60ea8cb3a80d709ba3d252b3e05913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Biomarkers</topic><topic>Brain damage</topic><topic>Brain injury</topic><topic>Brain research</topic><topic>Classification</topic><topic>Complexity</topic><topic>Data analysis</topic><topic>Dependence</topic><topic>Design</topic><topic>Diagnostic aid system</topic><topic>Drug abuse</topic><topic>Drug dependence</topic><topic>Drug development</topic><topic>Dynamic characteristics</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>ENTR</topic><topic>Entropy</topic><topic>Functional anatomy</topic><topic>Heroin</topic><topic>Humans</topic><topic>Medical diagnosis</topic><topic>Multidrug abusers</topic><topic>Neural networks</topic><topic>Nonlinear analysis</topic><topic>Recording equipment</topic><topic>Recurrence quantification analysis</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Statistical analysis</topic><topic>Structure-function relationships</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Time series</topic><topic>Urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marvi, Nasimeh</creatorcontrib><creatorcontrib>Haddadnia, Javad</creatorcontrib><creatorcontrib>Fayyazi Bordbar, Mohammad Reza</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Biological Sciences</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marvi, Nasimeh</au><au>Haddadnia, Javad</au><au>Fayyazi Bordbar, Mohammad Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An automated drug dependence detection system based on EEG</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2023-05</date><risdate>2023</risdate><volume>158</volume><spage>106853</spage><epage>106853</epage><pages>106853-106853</pages><artnum>106853</artnum><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>Substance abuse causes damage to the brain structure and function. This research aim is to design an automated drug dependence detection system based on EEG signals in a Multidrug (MD) abuser.
EEG signals were recorded from participants categorized into MD-dependents (n = 10) and Healthy Control (HC) (n = 12). The Recurrence Plot investigates the dynamic characteristics of the EEG signal. The entropy index (ENTR) measured from the Recurrence Quantification Analysis was considered the complexity index of the delta, theta, alpha, beta, gamma, and all-band EEG signals. Statistical analysis was performed by t-test. The support vector machine technique was used for the data classification.
The results show decreased ENTR indices in the delta, alpha, beta, gamma, and all-band EEG signal and increased theta band in MD abusers compared to the HC group. That indicated the reduction of complexity in the delta, alpha, beta, gamma, and all-band EEG signals in the MD group. Additionally, the SVM classifier distinguished the MD group from the HC group with 90% accuracy, 89.36% sensitivity, 90.7% specificity, and 89.8% F1 score.
The nonlinear analysis of brain data was used to build an automatic diagnostic aid system that could identify HC people apart from those who abuse MD.
•Investigate the change in brain signal complexity with the Recurrence Quantification Analysis method.•A decrease in brain complexity in the multidrug dependence group compared to the Healthy Control.•Design an automated drug dependence detection system for multidrug dependence detection.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>37030264</pmid><doi>10.1016/j.compbiomed.2023.106853</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8028-985X</orcidid><orcidid>https://orcid.org/0000-0003-4736-455X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2023-05, Vol.158, p.106853-106853, Article 106853 |
issn | 0010-4825 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_2798709864 |
source | ScienceDirect Journals |
subjects | Accuracy Algorithms Biomarkers Brain damage Brain injury Brain research Classification Complexity Data analysis Dependence Design Diagnostic aid system Drug abuse Drug dependence Drug development Dynamic characteristics EEG Electroencephalography Electroencephalography - methods ENTR Entropy Functional anatomy Heroin Humans Medical diagnosis Multidrug abusers Neural networks Nonlinear analysis Recording equipment Recurrence quantification analysis Signal Processing, Computer-Assisted Statistical analysis Structure-function relationships Support Vector Machine Support vector machines Time series Urine |
title | An automated drug dependence detection system based on EEG |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A54%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20automated%20drug%20dependence%20detection%20system%20based%20on%20EEG&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Marvi,%20Nasimeh&rft.date=2023-05&rft.volume=158&rft.spage=106853&rft.epage=106853&rft.pages=106853-106853&rft.artnum=106853&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2023.106853&rft_dat=%3Cproquest_cross%3E2798709864%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-8f9e2f7d9c0647473bb2541a1195a032cfa60ea8cb3a80d709ba3d252b3e05913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2801966781&rft_id=info:pmid/37030264&rfr_iscdi=true |