Loading…

Computer-aided drug design in seeking viral capsid modulators

[Display omitted] •Viral capsids, as essential structural proteins, are promising antiviral targets.•CADD approach such as virtual screening successfully applied in seeking viral capsid modulators.•AI such as deep learning will be a useful tool in the development of capsid modulators. Approved or li...

Full description

Saved in:
Bibliographic Details
Published in:Drug discovery today 2023-06, Vol.28 (6), p.103581-103581, Article 103581
Main Authors: Zhao, Shujie, Zhang, Xujie, da Silva-Júnior, Edeildo Ferreira, Zhan, Peng, Liu, Xinyong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c277t-529f89407c0abbd6b72414d80ac65b7cd1f5d61032c859d2d89abea8a2284ec33
cites cdi_FETCH-LOGICAL-c277t-529f89407c0abbd6b72414d80ac65b7cd1f5d61032c859d2d89abea8a2284ec33
container_end_page 103581
container_issue 6
container_start_page 103581
container_title Drug discovery today
container_volume 28
creator Zhao, Shujie
Zhang, Xujie
da Silva-Júnior, Edeildo Ferreira
Zhan, Peng
Liu, Xinyong
description [Display omitted] •Viral capsids, as essential structural proteins, are promising antiviral targets.•CADD approach such as virtual screening successfully applied in seeking viral capsid modulators.•AI such as deep learning will be a useful tool in the development of capsid modulators. Approved or licensed antiviral drugs have limited applications because of their drug resistance and severe adverse effects. By contrast, by stabilizing or destroying the viral capsid, compounds known as capsid modulators prevent viral replication by acting on new targets and, therefore, overcoming the problem of clinical drug resistance. For example, computer-aided drug design (CADD) methods, using strategies based on structures of biological targets (structure-based drug design; SBDD), such as docking, molecular dynamics (MD) simulations, and virtual screening (VS), have provided opportunities for fast and effective development of viral capsid modulators. In this review, we summarize the application of CADD in the discovery, optimization, and mechanism prediction of capsid-targeting small molecules, providing new insights into antiviral drug discovery modalities.
doi_str_mv 10.1016/j.drudis.2023.103581
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2798714317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359644623000971</els_id><sourcerecordid>2798714317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-529f89407c0abbd6b72414d80ac65b7cd1f5d61032c859d2d89abea8a2284ec33</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoVqv_QGSWbqbmOcksFKT4goIbXYdMcqekzqMmMwX_vSlTXbq6l8s553I-hK4IXhBMitvNwoXR-bigmLJ0YkKRI3RGlFS5UIwep52JMi84L2boPMYNxoSWojhFMyYxw4KxM3S37NvtOEDIjXfgspS5zhxEv-4y32UR4NN362zng2kya7bRu6zt3diYoQ_xAp3UpolweZhz9PH0-L58yVdvz6_Lh1VuqZRDLmhZq5JjabGpKldUknLCncLGFqKS1pFauCJVoFaJ0lGnSlOBUYZSxcEyNkc3U-429F8jxEG3PlpoGtNBP0ZNZakk4YzIJOWT1IY-xgC13gbfmvCtCdZ7cHqjJ3B6D05P4JLt-vBhrFpwf6ZfUklwPwkg9dx5CDpaD50F5wPYQbve___hBzZ6gE0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2798714317</pqid></control><display><type>article</type><title>Computer-aided drug design in seeking viral capsid modulators</title><source>ScienceDirect Freedom Collection</source><creator>Zhao, Shujie ; Zhang, Xujie ; da Silva-Júnior, Edeildo Ferreira ; Zhan, Peng ; Liu, Xinyong</creator><creatorcontrib>Zhao, Shujie ; Zhang, Xujie ; da Silva-Júnior, Edeildo Ferreira ; Zhan, Peng ; Liu, Xinyong</creatorcontrib><description>[Display omitted] •Viral capsids, as essential structural proteins, are promising antiviral targets.•CADD approach such as virtual screening successfully applied in seeking viral capsid modulators.•AI such as deep learning will be a useful tool in the development of capsid modulators. Approved or licensed antiviral drugs have limited applications because of their drug resistance and severe adverse effects. By contrast, by stabilizing or destroying the viral capsid, compounds known as capsid modulators prevent viral replication by acting on new targets and, therefore, overcoming the problem of clinical drug resistance. For example, computer-aided drug design (CADD) methods, using strategies based on structures of biological targets (structure-based drug design; SBDD), such as docking, molecular dynamics (MD) simulations, and virtual screening (VS), have provided opportunities for fast and effective development of viral capsid modulators. In this review, we summarize the application of CADD in the discovery, optimization, and mechanism prediction of capsid-targeting small molecules, providing new insights into antiviral drug discovery modalities.</description><identifier>ISSN: 1359-6446</identifier><identifier>EISSN: 1878-5832</identifier><identifier>DOI: 10.1016/j.drudis.2023.103581</identifier><identifier>PMID: 37030533</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Antiviral Agents - chemistry ; Antiviral Agents - pharmacology ; CADD ; Capsid ; capsid modulators ; Computer-Aided Design ; Drug Design ; Drug Discovery ; HBV ; HIV-1 ; HRV ; virtual screening</subject><ispartof>Drug discovery today, 2023-06, Vol.28 (6), p.103581-103581, Article 103581</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-529f89407c0abbd6b72414d80ac65b7cd1f5d61032c859d2d89abea8a2284ec33</citedby><cites>FETCH-LOGICAL-c277t-529f89407c0abbd6b72414d80ac65b7cd1f5d61032c859d2d89abea8a2284ec33</cites><orcidid>0000-0002-1156-1036</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37030533$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Shujie</creatorcontrib><creatorcontrib>Zhang, Xujie</creatorcontrib><creatorcontrib>da Silva-Júnior, Edeildo Ferreira</creatorcontrib><creatorcontrib>Zhan, Peng</creatorcontrib><creatorcontrib>Liu, Xinyong</creatorcontrib><title>Computer-aided drug design in seeking viral capsid modulators</title><title>Drug discovery today</title><addtitle>Drug Discov Today</addtitle><description>[Display omitted] •Viral capsids, as essential structural proteins, are promising antiviral targets.•CADD approach such as virtual screening successfully applied in seeking viral capsid modulators.•AI such as deep learning will be a useful tool in the development of capsid modulators. Approved or licensed antiviral drugs have limited applications because of their drug resistance and severe adverse effects. By contrast, by stabilizing or destroying the viral capsid, compounds known as capsid modulators prevent viral replication by acting on new targets and, therefore, overcoming the problem of clinical drug resistance. For example, computer-aided drug design (CADD) methods, using strategies based on structures of biological targets (structure-based drug design; SBDD), such as docking, molecular dynamics (MD) simulations, and virtual screening (VS), have provided opportunities for fast and effective development of viral capsid modulators. In this review, we summarize the application of CADD in the discovery, optimization, and mechanism prediction of capsid-targeting small molecules, providing new insights into antiviral drug discovery modalities.</description><subject>Antiviral Agents - chemistry</subject><subject>Antiviral Agents - pharmacology</subject><subject>CADD</subject><subject>Capsid</subject><subject>capsid modulators</subject><subject>Computer-Aided Design</subject><subject>Drug Design</subject><subject>Drug Discovery</subject><subject>HBV</subject><subject>HIV-1</subject><subject>HRV</subject><subject>virtual screening</subject><issn>1359-6446</issn><issn>1878-5832</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoVqv_QGSWbqbmOcksFKT4goIbXYdMcqekzqMmMwX_vSlTXbq6l8s553I-hK4IXhBMitvNwoXR-bigmLJ0YkKRI3RGlFS5UIwep52JMi84L2boPMYNxoSWojhFMyYxw4KxM3S37NvtOEDIjXfgspS5zhxEv-4y32UR4NN362zng2kya7bRu6zt3diYoQ_xAp3UpolweZhz9PH0-L58yVdvz6_Lh1VuqZRDLmhZq5JjabGpKldUknLCncLGFqKS1pFauCJVoFaJ0lGnSlOBUYZSxcEyNkc3U-429F8jxEG3PlpoGtNBP0ZNZakk4YzIJOWT1IY-xgC13gbfmvCtCdZ7cHqjJ3B6D05P4JLt-vBhrFpwf6ZfUklwPwkg9dx5CDpaD50F5wPYQbve___hBzZ6gE0</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Zhao, Shujie</creator><creator>Zhang, Xujie</creator><creator>da Silva-Júnior, Edeildo Ferreira</creator><creator>Zhan, Peng</creator><creator>Liu, Xinyong</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1156-1036</orcidid></search><sort><creationdate>202306</creationdate><title>Computer-aided drug design in seeking viral capsid modulators</title><author>Zhao, Shujie ; Zhang, Xujie ; da Silva-Júnior, Edeildo Ferreira ; Zhan, Peng ; Liu, Xinyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-529f89407c0abbd6b72414d80ac65b7cd1f5d61032c859d2d89abea8a2284ec33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antiviral Agents - chemistry</topic><topic>Antiviral Agents - pharmacology</topic><topic>CADD</topic><topic>Capsid</topic><topic>capsid modulators</topic><topic>Computer-Aided Design</topic><topic>Drug Design</topic><topic>Drug Discovery</topic><topic>HBV</topic><topic>HIV-1</topic><topic>HRV</topic><topic>virtual screening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Shujie</creatorcontrib><creatorcontrib>Zhang, Xujie</creatorcontrib><creatorcontrib>da Silva-Júnior, Edeildo Ferreira</creatorcontrib><creatorcontrib>Zhan, Peng</creatorcontrib><creatorcontrib>Liu, Xinyong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Drug discovery today</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Shujie</au><au>Zhang, Xujie</au><au>da Silva-Júnior, Edeildo Ferreira</au><au>Zhan, Peng</au><au>Liu, Xinyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer-aided drug design in seeking viral capsid modulators</atitle><jtitle>Drug discovery today</jtitle><addtitle>Drug Discov Today</addtitle><date>2023-06</date><risdate>2023</risdate><volume>28</volume><issue>6</issue><spage>103581</spage><epage>103581</epage><pages>103581-103581</pages><artnum>103581</artnum><issn>1359-6446</issn><eissn>1878-5832</eissn><abstract>[Display omitted] •Viral capsids, as essential structural proteins, are promising antiviral targets.•CADD approach such as virtual screening successfully applied in seeking viral capsid modulators.•AI such as deep learning will be a useful tool in the development of capsid modulators. Approved or licensed antiviral drugs have limited applications because of their drug resistance and severe adverse effects. By contrast, by stabilizing or destroying the viral capsid, compounds known as capsid modulators prevent viral replication by acting on new targets and, therefore, overcoming the problem of clinical drug resistance. For example, computer-aided drug design (CADD) methods, using strategies based on structures of biological targets (structure-based drug design; SBDD), such as docking, molecular dynamics (MD) simulations, and virtual screening (VS), have provided opportunities for fast and effective development of viral capsid modulators. In this review, we summarize the application of CADD in the discovery, optimization, and mechanism prediction of capsid-targeting small molecules, providing new insights into antiviral drug discovery modalities.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>37030533</pmid><doi>10.1016/j.drudis.2023.103581</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1156-1036</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-6446
ispartof Drug discovery today, 2023-06, Vol.28 (6), p.103581-103581, Article 103581
issn 1359-6446
1878-5832
language eng
recordid cdi_proquest_miscellaneous_2798714317
source ScienceDirect Freedom Collection
subjects Antiviral Agents - chemistry
Antiviral Agents - pharmacology
CADD
Capsid
capsid modulators
Computer-Aided Design
Drug Design
Drug Discovery
HBV
HIV-1
HRV
virtual screening
title Computer-aided drug design in seeking viral capsid modulators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A52%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer-aided%20drug%20design%20in%20seeking%20viral%20capsid%20modulators&rft.jtitle=Drug%20discovery%20today&rft.au=Zhao,%20Shujie&rft.date=2023-06&rft.volume=28&rft.issue=6&rft.spage=103581&rft.epage=103581&rft.pages=103581-103581&rft.artnum=103581&rft.issn=1359-6446&rft.eissn=1878-5832&rft_id=info:doi/10.1016/j.drudis.2023.103581&rft_dat=%3Cproquest_cross%3E2798714317%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c277t-529f89407c0abbd6b72414d80ac65b7cd1f5d61032c859d2d89abea8a2284ec33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2798714317&rft_id=info:pmid/37030533&rfr_iscdi=true