Loading…
Computer-aided drug design in seeking viral capsid modulators
[Display omitted] •Viral capsids, as essential structural proteins, are promising antiviral targets.•CADD approach such as virtual screening successfully applied in seeking viral capsid modulators.•AI such as deep learning will be a useful tool in the development of capsid modulators. Approved or li...
Saved in:
Published in: | Drug discovery today 2023-06, Vol.28 (6), p.103581-103581, Article 103581 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c277t-529f89407c0abbd6b72414d80ac65b7cd1f5d61032c859d2d89abea8a2284ec33 |
---|---|
cites | cdi_FETCH-LOGICAL-c277t-529f89407c0abbd6b72414d80ac65b7cd1f5d61032c859d2d89abea8a2284ec33 |
container_end_page | 103581 |
container_issue | 6 |
container_start_page | 103581 |
container_title | Drug discovery today |
container_volume | 28 |
creator | Zhao, Shujie Zhang, Xujie da Silva-Júnior, Edeildo Ferreira Zhan, Peng Liu, Xinyong |
description | [Display omitted]
•Viral capsids, as essential structural proteins, are promising antiviral targets.•CADD approach such as virtual screening successfully applied in seeking viral capsid modulators.•AI such as deep learning will be a useful tool in the development of capsid modulators.
Approved or licensed antiviral drugs have limited applications because of their drug resistance and severe adverse effects. By contrast, by stabilizing or destroying the viral capsid, compounds known as capsid modulators prevent viral replication by acting on new targets and, therefore, overcoming the problem of clinical drug resistance. For example, computer-aided drug design (CADD) methods, using strategies based on structures of biological targets (structure-based drug design; SBDD), such as docking, molecular dynamics (MD) simulations, and virtual screening (VS), have provided opportunities for fast and effective development of viral capsid modulators. In this review, we summarize the application of CADD in the discovery, optimization, and mechanism prediction of capsid-targeting small molecules, providing new insights into antiviral drug discovery modalities. |
doi_str_mv | 10.1016/j.drudis.2023.103581 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2798714317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359644623000971</els_id><sourcerecordid>2798714317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-529f89407c0abbd6b72414d80ac65b7cd1f5d61032c859d2d89abea8a2284ec33</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoVqv_QGSWbqbmOcksFKT4goIbXYdMcqekzqMmMwX_vSlTXbq6l8s553I-hK4IXhBMitvNwoXR-bigmLJ0YkKRI3RGlFS5UIwep52JMi84L2boPMYNxoSWojhFMyYxw4KxM3S37NvtOEDIjXfgspS5zhxEv-4y32UR4NN362zng2kya7bRu6zt3diYoQ_xAp3UpolweZhz9PH0-L58yVdvz6_Lh1VuqZRDLmhZq5JjabGpKldUknLCncLGFqKS1pFauCJVoFaJ0lGnSlOBUYZSxcEyNkc3U-429F8jxEG3PlpoGtNBP0ZNZakk4YzIJOWT1IY-xgC13gbfmvCtCdZ7cHqjJ3B6D05P4JLt-vBhrFpwf6ZfUklwPwkg9dx5CDpaD50F5wPYQbve___hBzZ6gE0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2798714317</pqid></control><display><type>article</type><title>Computer-aided drug design in seeking viral capsid modulators</title><source>ScienceDirect Freedom Collection</source><creator>Zhao, Shujie ; Zhang, Xujie ; da Silva-Júnior, Edeildo Ferreira ; Zhan, Peng ; Liu, Xinyong</creator><creatorcontrib>Zhao, Shujie ; Zhang, Xujie ; da Silva-Júnior, Edeildo Ferreira ; Zhan, Peng ; Liu, Xinyong</creatorcontrib><description>[Display omitted]
•Viral capsids, as essential structural proteins, are promising antiviral targets.•CADD approach such as virtual screening successfully applied in seeking viral capsid modulators.•AI such as deep learning will be a useful tool in the development of capsid modulators.
Approved or licensed antiviral drugs have limited applications because of their drug resistance and severe adverse effects. By contrast, by stabilizing or destroying the viral capsid, compounds known as capsid modulators prevent viral replication by acting on new targets and, therefore, overcoming the problem of clinical drug resistance. For example, computer-aided drug design (CADD) methods, using strategies based on structures of biological targets (structure-based drug design; SBDD), such as docking, molecular dynamics (MD) simulations, and virtual screening (VS), have provided opportunities for fast and effective development of viral capsid modulators. In this review, we summarize the application of CADD in the discovery, optimization, and mechanism prediction of capsid-targeting small molecules, providing new insights into antiviral drug discovery modalities.</description><identifier>ISSN: 1359-6446</identifier><identifier>EISSN: 1878-5832</identifier><identifier>DOI: 10.1016/j.drudis.2023.103581</identifier><identifier>PMID: 37030533</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Antiviral Agents - chemistry ; Antiviral Agents - pharmacology ; CADD ; Capsid ; capsid modulators ; Computer-Aided Design ; Drug Design ; Drug Discovery ; HBV ; HIV-1 ; HRV ; virtual screening</subject><ispartof>Drug discovery today, 2023-06, Vol.28 (6), p.103581-103581, Article 103581</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-529f89407c0abbd6b72414d80ac65b7cd1f5d61032c859d2d89abea8a2284ec33</citedby><cites>FETCH-LOGICAL-c277t-529f89407c0abbd6b72414d80ac65b7cd1f5d61032c859d2d89abea8a2284ec33</cites><orcidid>0000-0002-1156-1036</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37030533$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Shujie</creatorcontrib><creatorcontrib>Zhang, Xujie</creatorcontrib><creatorcontrib>da Silva-Júnior, Edeildo Ferreira</creatorcontrib><creatorcontrib>Zhan, Peng</creatorcontrib><creatorcontrib>Liu, Xinyong</creatorcontrib><title>Computer-aided drug design in seeking viral capsid modulators</title><title>Drug discovery today</title><addtitle>Drug Discov Today</addtitle><description>[Display omitted]
•Viral capsids, as essential structural proteins, are promising antiviral targets.•CADD approach such as virtual screening successfully applied in seeking viral capsid modulators.•AI such as deep learning will be a useful tool in the development of capsid modulators.
Approved or licensed antiviral drugs have limited applications because of their drug resistance and severe adverse effects. By contrast, by stabilizing or destroying the viral capsid, compounds known as capsid modulators prevent viral replication by acting on new targets and, therefore, overcoming the problem of clinical drug resistance. For example, computer-aided drug design (CADD) methods, using strategies based on structures of biological targets (structure-based drug design; SBDD), such as docking, molecular dynamics (MD) simulations, and virtual screening (VS), have provided opportunities for fast and effective development of viral capsid modulators. In this review, we summarize the application of CADD in the discovery, optimization, and mechanism prediction of capsid-targeting small molecules, providing new insights into antiviral drug discovery modalities.</description><subject>Antiviral Agents - chemistry</subject><subject>Antiviral Agents - pharmacology</subject><subject>CADD</subject><subject>Capsid</subject><subject>capsid modulators</subject><subject>Computer-Aided Design</subject><subject>Drug Design</subject><subject>Drug Discovery</subject><subject>HBV</subject><subject>HIV-1</subject><subject>HRV</subject><subject>virtual screening</subject><issn>1359-6446</issn><issn>1878-5832</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoVqv_QGSWbqbmOcksFKT4goIbXYdMcqekzqMmMwX_vSlTXbq6l8s553I-hK4IXhBMitvNwoXR-bigmLJ0YkKRI3RGlFS5UIwep52JMi84L2boPMYNxoSWojhFMyYxw4KxM3S37NvtOEDIjXfgspS5zhxEv-4y32UR4NN362zng2kya7bRu6zt3diYoQ_xAp3UpolweZhz9PH0-L58yVdvz6_Lh1VuqZRDLmhZq5JjabGpKldUknLCncLGFqKS1pFauCJVoFaJ0lGnSlOBUYZSxcEyNkc3U-429F8jxEG3PlpoGtNBP0ZNZakk4YzIJOWT1IY-xgC13gbfmvCtCdZ7cHqjJ3B6D05P4JLt-vBhrFpwf6ZfUklwPwkg9dx5CDpaD50F5wPYQbve___hBzZ6gE0</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Zhao, Shujie</creator><creator>Zhang, Xujie</creator><creator>da Silva-Júnior, Edeildo Ferreira</creator><creator>Zhan, Peng</creator><creator>Liu, Xinyong</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1156-1036</orcidid></search><sort><creationdate>202306</creationdate><title>Computer-aided drug design in seeking viral capsid modulators</title><author>Zhao, Shujie ; Zhang, Xujie ; da Silva-Júnior, Edeildo Ferreira ; Zhan, Peng ; Liu, Xinyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-529f89407c0abbd6b72414d80ac65b7cd1f5d61032c859d2d89abea8a2284ec33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antiviral Agents - chemistry</topic><topic>Antiviral Agents - pharmacology</topic><topic>CADD</topic><topic>Capsid</topic><topic>capsid modulators</topic><topic>Computer-Aided Design</topic><topic>Drug Design</topic><topic>Drug Discovery</topic><topic>HBV</topic><topic>HIV-1</topic><topic>HRV</topic><topic>virtual screening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Shujie</creatorcontrib><creatorcontrib>Zhang, Xujie</creatorcontrib><creatorcontrib>da Silva-Júnior, Edeildo Ferreira</creatorcontrib><creatorcontrib>Zhan, Peng</creatorcontrib><creatorcontrib>Liu, Xinyong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Drug discovery today</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Shujie</au><au>Zhang, Xujie</au><au>da Silva-Júnior, Edeildo Ferreira</au><au>Zhan, Peng</au><au>Liu, Xinyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer-aided drug design in seeking viral capsid modulators</atitle><jtitle>Drug discovery today</jtitle><addtitle>Drug Discov Today</addtitle><date>2023-06</date><risdate>2023</risdate><volume>28</volume><issue>6</issue><spage>103581</spage><epage>103581</epage><pages>103581-103581</pages><artnum>103581</artnum><issn>1359-6446</issn><eissn>1878-5832</eissn><abstract>[Display omitted]
•Viral capsids, as essential structural proteins, are promising antiviral targets.•CADD approach such as virtual screening successfully applied in seeking viral capsid modulators.•AI such as deep learning will be a useful tool in the development of capsid modulators.
Approved or licensed antiviral drugs have limited applications because of their drug resistance and severe adverse effects. By contrast, by stabilizing or destroying the viral capsid, compounds known as capsid modulators prevent viral replication by acting on new targets and, therefore, overcoming the problem of clinical drug resistance. For example, computer-aided drug design (CADD) methods, using strategies based on structures of biological targets (structure-based drug design; SBDD), such as docking, molecular dynamics (MD) simulations, and virtual screening (VS), have provided opportunities for fast and effective development of viral capsid modulators. In this review, we summarize the application of CADD in the discovery, optimization, and mechanism prediction of capsid-targeting small molecules, providing new insights into antiviral drug discovery modalities.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>37030533</pmid><doi>10.1016/j.drudis.2023.103581</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1156-1036</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6446 |
ispartof | Drug discovery today, 2023-06, Vol.28 (6), p.103581-103581, Article 103581 |
issn | 1359-6446 1878-5832 |
language | eng |
recordid | cdi_proquest_miscellaneous_2798714317 |
source | ScienceDirect Freedom Collection |
subjects | Antiviral Agents - chemistry Antiviral Agents - pharmacology CADD Capsid capsid modulators Computer-Aided Design Drug Design Drug Discovery HBV HIV-1 HRV virtual screening |
title | Computer-aided drug design in seeking viral capsid modulators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A52%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer-aided%20drug%20design%20in%20seeking%20viral%20capsid%20modulators&rft.jtitle=Drug%20discovery%20today&rft.au=Zhao,%20Shujie&rft.date=2023-06&rft.volume=28&rft.issue=6&rft.spage=103581&rft.epage=103581&rft.pages=103581-103581&rft.artnum=103581&rft.issn=1359-6446&rft.eissn=1878-5832&rft_id=info:doi/10.1016/j.drudis.2023.103581&rft_dat=%3Cproquest_cross%3E2798714317%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c277t-529f89407c0abbd6b72414d80ac65b7cd1f5d61032c859d2d89abea8a2284ec33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2798714317&rft_id=info:pmid/37030533&rfr_iscdi=true |