Loading…
3-D shape estimation of DNA molecules from stereo cryo-electron micro-graphs using a projection-steerable snake
We introduce a three-dimensional (3-D) parametric active contour algorithm for the shape estimation of DNA molecules from stereo cryo-electron micrographs. We estimate the shape by matching the projections of a 3-D global shape model with the micrographs; we choose the global model as a 3-D filament...
Saved in:
Published in: | IEEE transactions on image processing 2006-01, Vol.15 (1), p.214-227 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c476t-dd3696e6a32c02517a6e6b08d5bd8b70ed76bcb00a3d6dbf8e8db6ed3e58ec053 |
---|---|
cites | cdi_FETCH-LOGICAL-c476t-dd3696e6a32c02517a6e6b08d5bd8b70ed76bcb00a3d6dbf8e8db6ed3e58ec053 |
container_end_page | 227 |
container_issue | 1 |
container_start_page | 214 |
container_title | IEEE transactions on image processing |
container_volume | 15 |
creator | Jacob, M. Blu, T. Vaillant, C. Maddocks, J.H. Unser, M. |
description | We introduce a three-dimensional (3-D) parametric active contour algorithm for the shape estimation of DNA molecules from stereo cryo-electron micrographs. We estimate the shape by matching the projections of a 3-D global shape model with the micrographs; we choose the global model as a 3-D filament with a B-spline skeleton and a specified radial profile. The active contour algorithm iteratively updates the B-spline coefficients, which requires us to evaluate the projections and match them with the micrographs at every iteration. Since the evaluation of the projections of the global model is computationally expensive, we propose a fast algorithm based on locally approximating it by elongated blob-like templates. We introduce the concept of projection-steerability and derive a projection-steerable elongated template. Since the two-dimensional projections of such a blob at any 3-D orientation can be expressed as a linear combination of a few basis functions, matching the projections of such a 3-D template involves evaluating a weighted sum of inner products between the basis functions and the micrographs. The weights are simple functions of the 3-D orientation and the inner-products are evaluated efficiently by separable filtering. We choose an internal energy term that penalizes the average curvature magnitude. Since the exact length of the DNA molecule is known a priori, we introduce a constraint energy term that forces the curve to have this specified length. The sum of these energies along with the image energy derived from the matching process is minimized using the conjugate gradients algorithm. We validate the algorithm using real, as well as simulated, data and show that it performs well. |
doi_str_mv | 10.1109/TIP.2005.860310 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_27988420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1556639</ieee_id><sourcerecordid>2350474111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-dd3696e6a32c02517a6e6b08d5bd8b70ed76bcb00a3d6dbf8e8db6ed3e58ec053</originalsourceid><addsrcrecordid>eNqF0ctv1DAQB2ALgegDzhyQkIVUOGU7tuNHjlVbSqUKOJRz5MekzZLEi50c-t_Xq11pJQ70ZFvzeeTxj5APDFaMQXN-f_trxQHkyigQDF6RY9bUrAKo-euyB6krzermiJzkvAZgtWTqLTliqhZSSnZMoqiuaH60G6SY5360cx8nGjt69eOCjnFAvwyYaZfiSPOMCSP16SlWWCpzKnTsfYrVQ7Kbx0yX3E8P1NJNiutSL62qcgmTdQPSPNk_-I686eyQ8f1-PSW_v13fX36v7n7e3F5e3FW-1mquQhCqUais4B64ZNqWgwMTpAvGacCglfMOwIqggusMmuAUBoHSoAcpTsnXXd_ylL9LGa0d--xxGOyEccmtaRQznGld5Jf_Sg2agTD8Rch1Y0zNocDP_8B1XNJUxm2N0kIqrrbofIfK9-WcsGs3qXx_emoZtNts25Jtu8223WVbbnzat13ciOHg92EWcLYHNns7dMlOvs8Hp4VpTC2K-7hzPSIeylIqJRrxDOXQtRs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867356260</pqid></control><display><type>article</type><title>3-D shape estimation of DNA molecules from stereo cryo-electron micro-graphs using a projection-steerable snake</title><source>IEEE Xplore (Online service)</source><creator>Jacob, M. ; Blu, T. ; Vaillant, C. ; Maddocks, J.H. ; Unser, M.</creator><creatorcontrib>Jacob, M. ; Blu, T. ; Vaillant, C. ; Maddocks, J.H. ; Unser, M.</creatorcontrib><description>We introduce a three-dimensional (3-D) parametric active contour algorithm for the shape estimation of DNA molecules from stereo cryo-electron micrographs. We estimate the shape by matching the projections of a 3-D global shape model with the micrographs; we choose the global model as a 3-D filament with a B-spline skeleton and a specified radial profile. The active contour algorithm iteratively updates the B-spline coefficients, which requires us to evaluate the projections and match them with the micrographs at every iteration. Since the evaluation of the projections of the global model is computationally expensive, we propose a fast algorithm based on locally approximating it by elongated blob-like templates. We introduce the concept of projection-steerability and derive a projection-steerable elongated template. Since the two-dimensional projections of such a blob at any 3-D orientation can be expressed as a linear combination of a few basis functions, matching the projections of such a 3-D template involves evaluating a weighted sum of inner products between the basis functions and the micrographs. The weights are simple functions of the 3-D orientation and the inner-products are evaluated efficiently by separable filtering. We choose an internal energy term that penalizes the average curvature magnitude. Since the exact length of the DNA molecule is known a priori, we introduce a constraint energy term that forces the curve to have this specified length. The sum of these energies along with the image energy derived from the matching process is minimized using the conjugate gradients algorithm. We validate the algorithm using real, as well as simulated, data and show that it performs well.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2005.860310</identifier><identifier>PMID: 16435551</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Active contour ; Active contours ; Algorithms ; Applied sciences ; Artificial Intelligence ; Atomic force microscopy ; Cluster Analysis ; Computer science; control theory; systems ; cryo ; Cryoelectron Microscopy - methods ; DNA ; DNA - ultrastructure ; Electrons ; Exact sciences and technology ; Filtering ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image reconstruction ; Imaging, Three-Dimensional - methods ; Information Storage and Retrieval - methods ; Information, signal and communications theory ; Iterative algorithms ; Jacobian matrices ; microscopy ; Nucleic Acid Conformation ; Pattern Recognition, Automated - methods ; Pattern recognition. Digital image processing. Computational geometry ; Photogrammetry - methods ; ridge ; separable filtering ; Shape ; Signal processing ; Spline ; steerable ; Studies ; Telecommunications and information theory</subject><ispartof>IEEE transactions on image processing, 2006-01, Vol.15 (1), p.214-227</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-dd3696e6a32c02517a6e6b08d5bd8b70ed76bcb00a3d6dbf8e8db6ed3e58ec053</citedby><cites>FETCH-LOGICAL-c476t-dd3696e6a32c02517a6e6b08d5bd8b70ed76bcb00a3d6dbf8e8db6ed3e58ec053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1556639$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17389843$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16435551$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacob, M.</creatorcontrib><creatorcontrib>Blu, T.</creatorcontrib><creatorcontrib>Vaillant, C.</creatorcontrib><creatorcontrib>Maddocks, J.H.</creatorcontrib><creatorcontrib>Unser, M.</creatorcontrib><title>3-D shape estimation of DNA molecules from stereo cryo-electron micro-graphs using a projection-steerable snake</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>We introduce a three-dimensional (3-D) parametric active contour algorithm for the shape estimation of DNA molecules from stereo cryo-electron micrographs. We estimate the shape by matching the projections of a 3-D global shape model with the micrographs; we choose the global model as a 3-D filament with a B-spline skeleton and a specified radial profile. The active contour algorithm iteratively updates the B-spline coefficients, which requires us to evaluate the projections and match them with the micrographs at every iteration. Since the evaluation of the projections of the global model is computationally expensive, we propose a fast algorithm based on locally approximating it by elongated blob-like templates. We introduce the concept of projection-steerability and derive a projection-steerable elongated template. Since the two-dimensional projections of such a blob at any 3-D orientation can be expressed as a linear combination of a few basis functions, matching the projections of such a 3-D template involves evaluating a weighted sum of inner products between the basis functions and the micrographs. The weights are simple functions of the 3-D orientation and the inner-products are evaluated efficiently by separable filtering. We choose an internal energy term that penalizes the average curvature magnitude. Since the exact length of the DNA molecule is known a priori, we introduce a constraint energy term that forces the curve to have this specified length. The sum of these energies along with the image energy derived from the matching process is minimized using the conjugate gradients algorithm. We validate the algorithm using real, as well as simulated, data and show that it performs well.</description><subject>Active contour</subject><subject>Active contours</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Atomic force microscopy</subject><subject>Cluster Analysis</subject><subject>Computer science; control theory; systems</subject><subject>cryo</subject><subject>Cryoelectron Microscopy - methods</subject><subject>DNA</subject><subject>DNA - ultrastructure</subject><subject>Electrons</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Information Storage and Retrieval - methods</subject><subject>Information, signal and communications theory</subject><subject>Iterative algorithms</subject><subject>Jacobian matrices</subject><subject>microscopy</subject><subject>Nucleic Acid Conformation</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Photogrammetry - methods</subject><subject>ridge</subject><subject>separable filtering</subject><subject>Shape</subject><subject>Signal processing</subject><subject>Spline</subject><subject>steerable</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqF0ctv1DAQB2ALgegDzhyQkIVUOGU7tuNHjlVbSqUKOJRz5MekzZLEi50c-t_Xq11pJQ70ZFvzeeTxj5APDFaMQXN-f_trxQHkyigQDF6RY9bUrAKo-euyB6krzermiJzkvAZgtWTqLTliqhZSSnZMoqiuaH60G6SY5360cx8nGjt69eOCjnFAvwyYaZfiSPOMCSP16SlWWCpzKnTsfYrVQ7Kbx0yX3E8P1NJNiutSL62qcgmTdQPSPNk_-I686eyQ8f1-PSW_v13fX36v7n7e3F5e3FW-1mquQhCqUais4B64ZNqWgwMTpAvGacCglfMOwIqggusMmuAUBoHSoAcpTsnXXd_ylL9LGa0d--xxGOyEccmtaRQznGld5Jf_Sg2agTD8Rch1Y0zNocDP_8B1XNJUxm2N0kIqrrbofIfK9-WcsGs3qXx_emoZtNts25Jtu8223WVbbnzat13ciOHg92EWcLYHNns7dMlOvs8Hp4VpTC2K-7hzPSIeylIqJRrxDOXQtRs</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>Jacob, M.</creator><creator>Blu, T.</creator><creator>Vaillant, C.</creator><creator>Maddocks, J.H.</creator><creator>Unser, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7TM</scope></search><sort><creationdate>200601</creationdate><title>3-D shape estimation of DNA molecules from stereo cryo-electron micro-graphs using a projection-steerable snake</title><author>Jacob, M. ; Blu, T. ; Vaillant, C. ; Maddocks, J.H. ; Unser, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-dd3696e6a32c02517a6e6b08d5bd8b70ed76bcb00a3d6dbf8e8db6ed3e58ec053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Active contour</topic><topic>Active contours</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Atomic force microscopy</topic><topic>Cluster Analysis</topic><topic>Computer science; control theory; systems</topic><topic>cryo</topic><topic>Cryoelectron Microscopy - methods</topic><topic>DNA</topic><topic>DNA - ultrastructure</topic><topic>Electrons</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Information Storage and Retrieval - methods</topic><topic>Information, signal and communications theory</topic><topic>Iterative algorithms</topic><topic>Jacobian matrices</topic><topic>microscopy</topic><topic>Nucleic Acid Conformation</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Photogrammetry - methods</topic><topic>ridge</topic><topic>separable filtering</topic><topic>Shape</topic><topic>Signal processing</topic><topic>Spline</topic><topic>steerable</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacob, M.</creatorcontrib><creatorcontrib>Blu, T.</creatorcontrib><creatorcontrib>Vaillant, C.</creatorcontrib><creatorcontrib>Maddocks, J.H.</creatorcontrib><creatorcontrib>Unser, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacob, M.</au><au>Blu, T.</au><au>Vaillant, C.</au><au>Maddocks, J.H.</au><au>Unser, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3-D shape estimation of DNA molecules from stereo cryo-electron micro-graphs using a projection-steerable snake</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2006-01</date><risdate>2006</risdate><volume>15</volume><issue>1</issue><spage>214</spage><epage>227</epage><pages>214-227</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>We introduce a three-dimensional (3-D) parametric active contour algorithm for the shape estimation of DNA molecules from stereo cryo-electron micrographs. We estimate the shape by matching the projections of a 3-D global shape model with the micrographs; we choose the global model as a 3-D filament with a B-spline skeleton and a specified radial profile. The active contour algorithm iteratively updates the B-spline coefficients, which requires us to evaluate the projections and match them with the micrographs at every iteration. Since the evaluation of the projections of the global model is computationally expensive, we propose a fast algorithm based on locally approximating it by elongated blob-like templates. We introduce the concept of projection-steerability and derive a projection-steerable elongated template. Since the two-dimensional projections of such a blob at any 3-D orientation can be expressed as a linear combination of a few basis functions, matching the projections of such a 3-D template involves evaluating a weighted sum of inner products between the basis functions and the micrographs. The weights are simple functions of the 3-D orientation and the inner-products are evaluated efficiently by separable filtering. We choose an internal energy term that penalizes the average curvature magnitude. Since the exact length of the DNA molecule is known a priori, we introduce a constraint energy term that forces the curve to have this specified length. The sum of these energies along with the image energy derived from the matching process is minimized using the conjugate gradients algorithm. We validate the algorithm using real, as well as simulated, data and show that it performs well.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>16435551</pmid><doi>10.1109/TIP.2005.860310</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2006-01, Vol.15 (1), p.214-227 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_miscellaneous_27988420 |
source | IEEE Xplore (Online service) |
subjects | Active contour Active contours Algorithms Applied sciences Artificial Intelligence Atomic force microscopy Cluster Analysis Computer science control theory systems cryo Cryoelectron Microscopy - methods DNA DNA - ultrastructure Electrons Exact sciences and technology Filtering Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image processing Image reconstruction Imaging, Three-Dimensional - methods Information Storage and Retrieval - methods Information, signal and communications theory Iterative algorithms Jacobian matrices microscopy Nucleic Acid Conformation Pattern Recognition, Automated - methods Pattern recognition. Digital image processing. Computational geometry Photogrammetry - methods ridge separable filtering Shape Signal processing Spline steerable Studies Telecommunications and information theory |
title | 3-D shape estimation of DNA molecules from stereo cryo-electron micro-graphs using a projection-steerable snake |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3-D%20shape%20estimation%20of%20DNA%20molecules%20from%20stereo%20cryo-electron%20micro-graphs%20using%20a%20projection-steerable%20snake&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Jacob,%20M.&rft.date=2006-01&rft.volume=15&rft.issue=1&rft.spage=214&rft.epage=227&rft.pages=214-227&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2005.860310&rft_dat=%3Cproquest_pasca%3E2350474111%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c476t-dd3696e6a32c02517a6e6b08d5bd8b70ed76bcb00a3d6dbf8e8db6ed3e58ec053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=867356260&rft_id=info:pmid/16435551&rft_ieee_id=1556639&rfr_iscdi=true |