Loading…

3-D shape estimation of DNA molecules from stereo cryo-electron micro-graphs using a projection-steerable snake

We introduce a three-dimensional (3-D) parametric active contour algorithm for the shape estimation of DNA molecules from stereo cryo-electron micrographs. We estimate the shape by matching the projections of a 3-D global shape model with the micrographs; we choose the global model as a 3-D filament...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2006-01, Vol.15 (1), p.214-227
Main Authors: Jacob, M., Blu, T., Vaillant, C., Maddocks, J.H., Unser, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c476t-dd3696e6a32c02517a6e6b08d5bd8b70ed76bcb00a3d6dbf8e8db6ed3e58ec053
cites cdi_FETCH-LOGICAL-c476t-dd3696e6a32c02517a6e6b08d5bd8b70ed76bcb00a3d6dbf8e8db6ed3e58ec053
container_end_page 227
container_issue 1
container_start_page 214
container_title IEEE transactions on image processing
container_volume 15
creator Jacob, M.
Blu, T.
Vaillant, C.
Maddocks, J.H.
Unser, M.
description We introduce a three-dimensional (3-D) parametric active contour algorithm for the shape estimation of DNA molecules from stereo cryo-electron micrographs. We estimate the shape by matching the projections of a 3-D global shape model with the micrographs; we choose the global model as a 3-D filament with a B-spline skeleton and a specified radial profile. The active contour algorithm iteratively updates the B-spline coefficients, which requires us to evaluate the projections and match them with the micrographs at every iteration. Since the evaluation of the projections of the global model is computationally expensive, we propose a fast algorithm based on locally approximating it by elongated blob-like templates. We introduce the concept of projection-steerability and derive a projection-steerable elongated template. Since the two-dimensional projections of such a blob at any 3-D orientation can be expressed as a linear combination of a few basis functions, matching the projections of such a 3-D template involves evaluating a weighted sum of inner products between the basis functions and the micrographs. The weights are simple functions of the 3-D orientation and the inner-products are evaluated efficiently by separable filtering. We choose an internal energy term that penalizes the average curvature magnitude. Since the exact length of the DNA molecule is known a priori, we introduce a constraint energy term that forces the curve to have this specified length. The sum of these energies along with the image energy derived from the matching process is minimized using the conjugate gradients algorithm. We validate the algorithm using real, as well as simulated, data and show that it performs well.
doi_str_mv 10.1109/TIP.2005.860310
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_27988420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1556639</ieee_id><sourcerecordid>2350474111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-dd3696e6a32c02517a6e6b08d5bd8b70ed76bcb00a3d6dbf8e8db6ed3e58ec053</originalsourceid><addsrcrecordid>eNqF0ctv1DAQB2ALgegDzhyQkIVUOGU7tuNHjlVbSqUKOJRz5MekzZLEi50c-t_Xq11pJQ70ZFvzeeTxj5APDFaMQXN-f_trxQHkyigQDF6RY9bUrAKo-euyB6krzermiJzkvAZgtWTqLTliqhZSSnZMoqiuaH60G6SY5360cx8nGjt69eOCjnFAvwyYaZfiSPOMCSP16SlWWCpzKnTsfYrVQ7Kbx0yX3E8P1NJNiutSL62qcgmTdQPSPNk_-I686eyQ8f1-PSW_v13fX36v7n7e3F5e3FW-1mquQhCqUais4B64ZNqWgwMTpAvGacCglfMOwIqggusMmuAUBoHSoAcpTsnXXd_ylL9LGa0d--xxGOyEccmtaRQznGld5Jf_Sg2agTD8Rch1Y0zNocDP_8B1XNJUxm2N0kIqrrbofIfK9-WcsGs3qXx_emoZtNts25Jtu8223WVbbnzat13ciOHg92EWcLYHNns7dMlOvs8Hp4VpTC2K-7hzPSIeylIqJRrxDOXQtRs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867356260</pqid></control><display><type>article</type><title>3-D shape estimation of DNA molecules from stereo cryo-electron micro-graphs using a projection-steerable snake</title><source>IEEE Xplore (Online service)</source><creator>Jacob, M. ; Blu, T. ; Vaillant, C. ; Maddocks, J.H. ; Unser, M.</creator><creatorcontrib>Jacob, M. ; Blu, T. ; Vaillant, C. ; Maddocks, J.H. ; Unser, M.</creatorcontrib><description>We introduce a three-dimensional (3-D) parametric active contour algorithm for the shape estimation of DNA molecules from stereo cryo-electron micrographs. We estimate the shape by matching the projections of a 3-D global shape model with the micrographs; we choose the global model as a 3-D filament with a B-spline skeleton and a specified radial profile. The active contour algorithm iteratively updates the B-spline coefficients, which requires us to evaluate the projections and match them with the micrographs at every iteration. Since the evaluation of the projections of the global model is computationally expensive, we propose a fast algorithm based on locally approximating it by elongated blob-like templates. We introduce the concept of projection-steerability and derive a projection-steerable elongated template. Since the two-dimensional projections of such a blob at any 3-D orientation can be expressed as a linear combination of a few basis functions, matching the projections of such a 3-D template involves evaluating a weighted sum of inner products between the basis functions and the micrographs. The weights are simple functions of the 3-D orientation and the inner-products are evaluated efficiently by separable filtering. We choose an internal energy term that penalizes the average curvature magnitude. Since the exact length of the DNA molecule is known a priori, we introduce a constraint energy term that forces the curve to have this specified length. The sum of these energies along with the image energy derived from the matching process is minimized using the conjugate gradients algorithm. We validate the algorithm using real, as well as simulated, data and show that it performs well.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2005.860310</identifier><identifier>PMID: 16435551</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Active contour ; Active contours ; Algorithms ; Applied sciences ; Artificial Intelligence ; Atomic force microscopy ; Cluster Analysis ; Computer science; control theory; systems ; cryo ; Cryoelectron Microscopy - methods ; DNA ; DNA - ultrastructure ; Electrons ; Exact sciences and technology ; Filtering ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image reconstruction ; Imaging, Three-Dimensional - methods ; Information Storage and Retrieval - methods ; Information, signal and communications theory ; Iterative algorithms ; Jacobian matrices ; microscopy ; Nucleic Acid Conformation ; Pattern Recognition, Automated - methods ; Pattern recognition. Digital image processing. Computational geometry ; Photogrammetry - methods ; ridge ; separable filtering ; Shape ; Signal processing ; Spline ; steerable ; Studies ; Telecommunications and information theory</subject><ispartof>IEEE transactions on image processing, 2006-01, Vol.15 (1), p.214-227</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-dd3696e6a32c02517a6e6b08d5bd8b70ed76bcb00a3d6dbf8e8db6ed3e58ec053</citedby><cites>FETCH-LOGICAL-c476t-dd3696e6a32c02517a6e6b08d5bd8b70ed76bcb00a3d6dbf8e8db6ed3e58ec053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1556639$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17389843$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16435551$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacob, M.</creatorcontrib><creatorcontrib>Blu, T.</creatorcontrib><creatorcontrib>Vaillant, C.</creatorcontrib><creatorcontrib>Maddocks, J.H.</creatorcontrib><creatorcontrib>Unser, M.</creatorcontrib><title>3-D shape estimation of DNA molecules from stereo cryo-electron micro-graphs using a projection-steerable snake</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>We introduce a three-dimensional (3-D) parametric active contour algorithm for the shape estimation of DNA molecules from stereo cryo-electron micrographs. We estimate the shape by matching the projections of a 3-D global shape model with the micrographs; we choose the global model as a 3-D filament with a B-spline skeleton and a specified radial profile. The active contour algorithm iteratively updates the B-spline coefficients, which requires us to evaluate the projections and match them with the micrographs at every iteration. Since the evaluation of the projections of the global model is computationally expensive, we propose a fast algorithm based on locally approximating it by elongated blob-like templates. We introduce the concept of projection-steerability and derive a projection-steerable elongated template. Since the two-dimensional projections of such a blob at any 3-D orientation can be expressed as a linear combination of a few basis functions, matching the projections of such a 3-D template involves evaluating a weighted sum of inner products between the basis functions and the micrographs. The weights are simple functions of the 3-D orientation and the inner-products are evaluated efficiently by separable filtering. We choose an internal energy term that penalizes the average curvature magnitude. Since the exact length of the DNA molecule is known a priori, we introduce a constraint energy term that forces the curve to have this specified length. The sum of these energies along with the image energy derived from the matching process is minimized using the conjugate gradients algorithm. We validate the algorithm using real, as well as simulated, data and show that it performs well.</description><subject>Active contour</subject><subject>Active contours</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Atomic force microscopy</subject><subject>Cluster Analysis</subject><subject>Computer science; control theory; systems</subject><subject>cryo</subject><subject>Cryoelectron Microscopy - methods</subject><subject>DNA</subject><subject>DNA - ultrastructure</subject><subject>Electrons</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Information Storage and Retrieval - methods</subject><subject>Information, signal and communications theory</subject><subject>Iterative algorithms</subject><subject>Jacobian matrices</subject><subject>microscopy</subject><subject>Nucleic Acid Conformation</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Photogrammetry - methods</subject><subject>ridge</subject><subject>separable filtering</subject><subject>Shape</subject><subject>Signal processing</subject><subject>Spline</subject><subject>steerable</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqF0ctv1DAQB2ALgegDzhyQkIVUOGU7tuNHjlVbSqUKOJRz5MekzZLEi50c-t_Xq11pJQ70ZFvzeeTxj5APDFaMQXN-f_trxQHkyigQDF6RY9bUrAKo-euyB6krzermiJzkvAZgtWTqLTliqhZSSnZMoqiuaH60G6SY5360cx8nGjt69eOCjnFAvwyYaZfiSPOMCSP16SlWWCpzKnTsfYrVQ7Kbx0yX3E8P1NJNiutSL62qcgmTdQPSPNk_-I686eyQ8f1-PSW_v13fX36v7n7e3F5e3FW-1mquQhCqUais4B64ZNqWgwMTpAvGacCglfMOwIqggusMmuAUBoHSoAcpTsnXXd_ylL9LGa0d--xxGOyEccmtaRQznGld5Jf_Sg2agTD8Rch1Y0zNocDP_8B1XNJUxm2N0kIqrrbofIfK9-WcsGs3qXx_emoZtNts25Jtu8223WVbbnzat13ciOHg92EWcLYHNns7dMlOvs8Hp4VpTC2K-7hzPSIeylIqJRrxDOXQtRs</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>Jacob, M.</creator><creator>Blu, T.</creator><creator>Vaillant, C.</creator><creator>Maddocks, J.H.</creator><creator>Unser, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7TM</scope></search><sort><creationdate>200601</creationdate><title>3-D shape estimation of DNA molecules from stereo cryo-electron micro-graphs using a projection-steerable snake</title><author>Jacob, M. ; Blu, T. ; Vaillant, C. ; Maddocks, J.H. ; Unser, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-dd3696e6a32c02517a6e6b08d5bd8b70ed76bcb00a3d6dbf8e8db6ed3e58ec053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Active contour</topic><topic>Active contours</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Atomic force microscopy</topic><topic>Cluster Analysis</topic><topic>Computer science; control theory; systems</topic><topic>cryo</topic><topic>Cryoelectron Microscopy - methods</topic><topic>DNA</topic><topic>DNA - ultrastructure</topic><topic>Electrons</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Information Storage and Retrieval - methods</topic><topic>Information, signal and communications theory</topic><topic>Iterative algorithms</topic><topic>Jacobian matrices</topic><topic>microscopy</topic><topic>Nucleic Acid Conformation</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Photogrammetry - methods</topic><topic>ridge</topic><topic>separable filtering</topic><topic>Shape</topic><topic>Signal processing</topic><topic>Spline</topic><topic>steerable</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacob, M.</creatorcontrib><creatorcontrib>Blu, T.</creatorcontrib><creatorcontrib>Vaillant, C.</creatorcontrib><creatorcontrib>Maddocks, J.H.</creatorcontrib><creatorcontrib>Unser, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacob, M.</au><au>Blu, T.</au><au>Vaillant, C.</au><au>Maddocks, J.H.</au><au>Unser, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3-D shape estimation of DNA molecules from stereo cryo-electron micro-graphs using a projection-steerable snake</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2006-01</date><risdate>2006</risdate><volume>15</volume><issue>1</issue><spage>214</spage><epage>227</epage><pages>214-227</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>We introduce a three-dimensional (3-D) parametric active contour algorithm for the shape estimation of DNA molecules from stereo cryo-electron micrographs. We estimate the shape by matching the projections of a 3-D global shape model with the micrographs; we choose the global model as a 3-D filament with a B-spline skeleton and a specified radial profile. The active contour algorithm iteratively updates the B-spline coefficients, which requires us to evaluate the projections and match them with the micrographs at every iteration. Since the evaluation of the projections of the global model is computationally expensive, we propose a fast algorithm based on locally approximating it by elongated blob-like templates. We introduce the concept of projection-steerability and derive a projection-steerable elongated template. Since the two-dimensional projections of such a blob at any 3-D orientation can be expressed as a linear combination of a few basis functions, matching the projections of such a 3-D template involves evaluating a weighted sum of inner products between the basis functions and the micrographs. The weights are simple functions of the 3-D orientation and the inner-products are evaluated efficiently by separable filtering. We choose an internal energy term that penalizes the average curvature magnitude. Since the exact length of the DNA molecule is known a priori, we introduce a constraint energy term that forces the curve to have this specified length. The sum of these energies along with the image energy derived from the matching process is minimized using the conjugate gradients algorithm. We validate the algorithm using real, as well as simulated, data and show that it performs well.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>16435551</pmid><doi>10.1109/TIP.2005.860310</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2006-01, Vol.15 (1), p.214-227
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_27988420
source IEEE Xplore (Online service)
subjects Active contour
Active contours
Algorithms
Applied sciences
Artificial Intelligence
Atomic force microscopy
Cluster Analysis
Computer science
control theory
systems
cryo
Cryoelectron Microscopy - methods
DNA
DNA - ultrastructure
Electrons
Exact sciences and technology
Filtering
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Image reconstruction
Imaging, Three-Dimensional - methods
Information Storage and Retrieval - methods
Information, signal and communications theory
Iterative algorithms
Jacobian matrices
microscopy
Nucleic Acid Conformation
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Photogrammetry - methods
ridge
separable filtering
Shape
Signal processing
Spline
steerable
Studies
Telecommunications and information theory
title 3-D shape estimation of DNA molecules from stereo cryo-electron micro-graphs using a projection-steerable snake
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3-D%20shape%20estimation%20of%20DNA%20molecules%20from%20stereo%20cryo-electron%20micro-graphs%20using%20a%20projection-steerable%20snake&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Jacob,%20M.&rft.date=2006-01&rft.volume=15&rft.issue=1&rft.spage=214&rft.epage=227&rft.pages=214-227&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2005.860310&rft_dat=%3Cproquest_pasca%3E2350474111%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c476t-dd3696e6a32c02517a6e6b08d5bd8b70ed76bcb00a3d6dbf8e8db6ed3e58ec053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=867356260&rft_id=info:pmid/16435551&rft_ieee_id=1556639&rfr_iscdi=true