Loading…
Adaptive multivariate rational data fitting with applications in electromagnetics
The behavior of certain electromagnetic devices or components can be simulated with great detail in software. A drawback of these simulation models is that they are very time consuming. Since the accuracy required for the computational electromagnetic analysis is usually only 2-3 significant digits,...
Saved in:
Published in: | IEEE transactions on microwave theory and techniques 2006-05, Vol.54 (5), p.2265-2274 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The behavior of certain electromagnetic devices or components can be simulated with great detail in software. A drawback of these simulation models is that they are very time consuming. Since the accuracy required for the computational electromagnetic analysis is usually only 2-3 significant digits, an approximate analytic model is sometimes used instead, as noted by Lehmensiek and Meyer in 2001. The most complex model we consider here is a multivariate rational function, which interpolates a number of simulation data. The interpolating rational function is constructed in such a way that it minimizes both the truncation error and the number of simulation data since each evaluation of the simulation model is computationally costly. |
---|---|
ISSN: | 0018-9480 1557-9670 |
DOI: | 10.1109/TMTT.2006.873637 |