Loading…
Hydrogen Sulfide Gas Amplified ROS Cascade: FeS@GOx Hybrid Nanozyme Designed for Boosting Tumor Chemodynamic Immunotherapy
Chemodynamic immunotherapy that utilizes catalysts to produce reactive oxygen species (ROS) for killing tumor cells and arousing antitumor immunity has received considerable attention. However, it is still restricted by low ROS production efficiency and insufficient immune activation, due to intrica...
Saved in:
Published in: | Advanced healthcare materials 2023-09, Vol.12 (23), p.e2300385-e2300385 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c323t-5511476e1bc21af0e9986f03792f36c0ee98ae8edd008426e1955e8f051f0d553 |
---|---|
cites | cdi_FETCH-LOGICAL-c323t-5511476e1bc21af0e9986f03792f36c0ee98ae8edd008426e1955e8f051f0d553 |
container_end_page | e2300385 |
container_issue | 23 |
container_start_page | e2300385 |
container_title | Advanced healthcare materials |
container_volume | 12 |
creator | Sun, Wanying Zhu, Chengyuan Song, Juan Ji, Shi-Chen Jiang, Bang-Ping Liang, Hong Shen, Xing-Can |
description | Chemodynamic immunotherapy that utilizes catalysts to produce reactive oxygen species (ROS) for killing tumor cells and arousing antitumor immunity has received considerable attention. However, it is still restricted by low ROS production efficiency and insufficient immune activation, due to intricate redox homeostasis in the tumor microenvironment (TME). Herein, a metalloprotein-like hybrid nanozyme (FeS@GOx) is designed by in situ growth of nanozyme (ferrous sulfide, FeS) in a natural enzyme (glucose oxidase, GOx) to amplify ROS cascade for boosting chemodynamic immunotherapy. In FeS@GOx, GOx allows the conversion of endogenous glucose to gluconic acid and hydrogen peroxide, which provides favorable increasing hydrogen peroxide for subsequent Fenton reaction of FeS nanozymes, thus reinforcing ROS production. Notably, hydrogen sulfide (H
S) release is activated by the gluconic acid generation-related pH decrease, which can suppress the activity of endogenous thioredoxin reductase and catalase to further inhibit ROS elimination. Thus, FeS@GOx can sustainably amplify ROS accumulation and perturb intracellular redox homeostasis to improve chemodynamic therapy and trigger robust immunogenic cell death for effective immunotherapy combined with immune checkpoint blockade. This work proposes a feasible H
S amplified ROS cascade strategy employing a bioinspired hybrid nanozyme, providing a novel pathway to multi-enzyme-mediated TME modulation for precise and efficient chemodynamic immunotherapy. |
doi_str_mv | 10.1002/adhm.202300385 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2799827645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2799827645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-5511476e1bc21af0e9986f03792f36c0ee98ae8edd008426e1955e8f051f0d553</originalsourceid><addsrcrecordid>eNpdkUFrGzEQRkVpaEKaa49F0EsvdkfSalfbUxM3sQMhhjg5L_JqZCusVq7khW5-fWSS-lBdRgNvPoZ5hHxhMGUA_Ic2Wz_lwAWAUPIDOeOs5hNeyvrj8V_AKblI6RnyKyUrFftETkUFBQBTZ-RlMZoYNtjT1dBZZ5DOdaKXftc569DQh-WKznRqtcGf9AZXv-bLv3QxrqMz9F734WX0SH9jcps-0zZEehVC2rt-Qx8Hn9vZFn0wY6-9a-mt90Mf9luMejd-JidWdwkv3us5ebq5fpwtJnfL-e3s8m7SCi72EykZK6oS2brlTFvAulalBVHV3IqyBcRaaVRoDIAqeAZrKVFZkMyCkVKck-9vubsY_gyY9o13qcWu0z2GITW8yom8KosD-u0_9DkMsc_bNVzlU1YlK1Smpm9UG0NKEW2zi87rODYMmoOY5iCmOYrJA1_fY4e1R3PE_2kQr9nDh_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864076148</pqid></control><display><type>article</type><title>Hydrogen Sulfide Gas Amplified ROS Cascade: FeS@GOx Hybrid Nanozyme Designed for Boosting Tumor Chemodynamic Immunotherapy</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Sun, Wanying ; Zhu, Chengyuan ; Song, Juan ; Ji, Shi-Chen ; Jiang, Bang-Ping ; Liang, Hong ; Shen, Xing-Can</creator><creatorcontrib>Sun, Wanying ; Zhu, Chengyuan ; Song, Juan ; Ji, Shi-Chen ; Jiang, Bang-Ping ; Liang, Hong ; Shen, Xing-Can</creatorcontrib><description>Chemodynamic immunotherapy that utilizes catalysts to produce reactive oxygen species (ROS) for killing tumor cells and arousing antitumor immunity has received considerable attention. However, it is still restricted by low ROS production efficiency and insufficient immune activation, due to intricate redox homeostasis in the tumor microenvironment (TME). Herein, a metalloprotein-like hybrid nanozyme (FeS@GOx) is designed by in situ growth of nanozyme (ferrous sulfide, FeS) in a natural enzyme (glucose oxidase, GOx) to amplify ROS cascade for boosting chemodynamic immunotherapy. In FeS@GOx, GOx allows the conversion of endogenous glucose to gluconic acid and hydrogen peroxide, which provides favorable increasing hydrogen peroxide for subsequent Fenton reaction of FeS nanozymes, thus reinforcing ROS production. Notably, hydrogen sulfide (H
S) release is activated by the gluconic acid generation-related pH decrease, which can suppress the activity of endogenous thioredoxin reductase and catalase to further inhibit ROS elimination. Thus, FeS@GOx can sustainably amplify ROS accumulation and perturb intracellular redox homeostasis to improve chemodynamic therapy and trigger robust immunogenic cell death for effective immunotherapy combined with immune checkpoint blockade. This work proposes a feasible H
S amplified ROS cascade strategy employing a bioinspired hybrid nanozyme, providing a novel pathway to multi-enzyme-mediated TME modulation for precise and efficient chemodynamic immunotherapy.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202300385</identifier><identifier>PMID: 37040018</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Amplification ; Catalase ; Catalysts ; Cell death ; Enzymes ; Gluconic acid ; Glucose oxidase ; Homeostasis ; Hydrogen ; Hydrogen peroxide ; Hydrogen sulfide ; Immune checkpoint inhibitors ; Immune response ; Immunogenicity ; Immunotherapy ; Iron sulfides ; Reactive oxygen species ; Reductases ; Thioredoxin ; Tumor cells ; Tumor microenvironment ; Tumors</subject><ispartof>Advanced healthcare materials, 2023-09, Vol.12 (23), p.e2300385-e2300385</ispartof><rights>2023 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-5511476e1bc21af0e9986f03792f36c0ee98ae8edd008426e1955e8f051f0d553</citedby><cites>FETCH-LOGICAL-c323t-5511476e1bc21af0e9986f03792f36c0ee98ae8edd008426e1955e8f051f0d553</cites><orcidid>0000-0002-7116-6919</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37040018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Wanying</creatorcontrib><creatorcontrib>Zhu, Chengyuan</creatorcontrib><creatorcontrib>Song, Juan</creatorcontrib><creatorcontrib>Ji, Shi-Chen</creatorcontrib><creatorcontrib>Jiang, Bang-Ping</creatorcontrib><creatorcontrib>Liang, Hong</creatorcontrib><creatorcontrib>Shen, Xing-Can</creatorcontrib><title>Hydrogen Sulfide Gas Amplified ROS Cascade: FeS@GOx Hybrid Nanozyme Designed for Boosting Tumor Chemodynamic Immunotherapy</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Chemodynamic immunotherapy that utilizes catalysts to produce reactive oxygen species (ROS) for killing tumor cells and arousing antitumor immunity has received considerable attention. However, it is still restricted by low ROS production efficiency and insufficient immune activation, due to intricate redox homeostasis in the tumor microenvironment (TME). Herein, a metalloprotein-like hybrid nanozyme (FeS@GOx) is designed by in situ growth of nanozyme (ferrous sulfide, FeS) in a natural enzyme (glucose oxidase, GOx) to amplify ROS cascade for boosting chemodynamic immunotherapy. In FeS@GOx, GOx allows the conversion of endogenous glucose to gluconic acid and hydrogen peroxide, which provides favorable increasing hydrogen peroxide for subsequent Fenton reaction of FeS nanozymes, thus reinforcing ROS production. Notably, hydrogen sulfide (H
S) release is activated by the gluconic acid generation-related pH decrease, which can suppress the activity of endogenous thioredoxin reductase and catalase to further inhibit ROS elimination. Thus, FeS@GOx can sustainably amplify ROS accumulation and perturb intracellular redox homeostasis to improve chemodynamic therapy and trigger robust immunogenic cell death for effective immunotherapy combined with immune checkpoint blockade. This work proposes a feasible H
S amplified ROS cascade strategy employing a bioinspired hybrid nanozyme, providing a novel pathway to multi-enzyme-mediated TME modulation for precise and efficient chemodynamic immunotherapy.</description><subject>Amplification</subject><subject>Catalase</subject><subject>Catalysts</subject><subject>Cell death</subject><subject>Enzymes</subject><subject>Gluconic acid</subject><subject>Glucose oxidase</subject><subject>Homeostasis</subject><subject>Hydrogen</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen sulfide</subject><subject>Immune checkpoint inhibitors</subject><subject>Immune response</subject><subject>Immunogenicity</subject><subject>Immunotherapy</subject><subject>Iron sulfides</subject><subject>Reactive oxygen species</subject><subject>Reductases</subject><subject>Thioredoxin</subject><subject>Tumor cells</subject><subject>Tumor microenvironment</subject><subject>Tumors</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkUFrGzEQRkVpaEKaa49F0EsvdkfSalfbUxM3sQMhhjg5L_JqZCusVq7khW5-fWSS-lBdRgNvPoZ5hHxhMGUA_Ic2Wz_lwAWAUPIDOeOs5hNeyvrj8V_AKblI6RnyKyUrFftETkUFBQBTZ-RlMZoYNtjT1dBZZ5DOdaKXftc569DQh-WKznRqtcGf9AZXv-bLv3QxrqMz9F734WX0SH9jcps-0zZEehVC2rt-Qx8Hn9vZFn0wY6-9a-mt90Mf9luMejd-JidWdwkv3us5ebq5fpwtJnfL-e3s8m7SCi72EykZK6oS2brlTFvAulalBVHV3IqyBcRaaVRoDIAqeAZrKVFZkMyCkVKck-9vubsY_gyY9o13qcWu0z2GITW8yom8KosD-u0_9DkMsc_bNVzlU1YlK1Smpm9UG0NKEW2zi87rODYMmoOY5iCmOYrJA1_fY4e1R3PE_2kQr9nDh_A</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Sun, Wanying</creator><creator>Zhu, Chengyuan</creator><creator>Song, Juan</creator><creator>Ji, Shi-Chen</creator><creator>Jiang, Bang-Ping</creator><creator>Liang, Hong</creator><creator>Shen, Xing-Can</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7116-6919</orcidid></search><sort><creationdate>20230901</creationdate><title>Hydrogen Sulfide Gas Amplified ROS Cascade: FeS@GOx Hybrid Nanozyme Designed for Boosting Tumor Chemodynamic Immunotherapy</title><author>Sun, Wanying ; Zhu, Chengyuan ; Song, Juan ; Ji, Shi-Chen ; Jiang, Bang-Ping ; Liang, Hong ; Shen, Xing-Can</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-5511476e1bc21af0e9986f03792f36c0ee98ae8edd008426e1955e8f051f0d553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amplification</topic><topic>Catalase</topic><topic>Catalysts</topic><topic>Cell death</topic><topic>Enzymes</topic><topic>Gluconic acid</topic><topic>Glucose oxidase</topic><topic>Homeostasis</topic><topic>Hydrogen</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen sulfide</topic><topic>Immune checkpoint inhibitors</topic><topic>Immune response</topic><topic>Immunogenicity</topic><topic>Immunotherapy</topic><topic>Iron sulfides</topic><topic>Reactive oxygen species</topic><topic>Reductases</topic><topic>Thioredoxin</topic><topic>Tumor cells</topic><topic>Tumor microenvironment</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Wanying</creatorcontrib><creatorcontrib>Zhu, Chengyuan</creatorcontrib><creatorcontrib>Song, Juan</creatorcontrib><creatorcontrib>Ji, Shi-Chen</creatorcontrib><creatorcontrib>Jiang, Bang-Ping</creatorcontrib><creatorcontrib>Liang, Hong</creatorcontrib><creatorcontrib>Shen, Xing-Can</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Wanying</au><au>Zhu, Chengyuan</au><au>Song, Juan</au><au>Ji, Shi-Chen</au><au>Jiang, Bang-Ping</au><au>Liang, Hong</au><au>Shen, Xing-Can</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen Sulfide Gas Amplified ROS Cascade: FeS@GOx Hybrid Nanozyme Designed for Boosting Tumor Chemodynamic Immunotherapy</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>12</volume><issue>23</issue><spage>e2300385</spage><epage>e2300385</epage><pages>e2300385-e2300385</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>Chemodynamic immunotherapy that utilizes catalysts to produce reactive oxygen species (ROS) for killing tumor cells and arousing antitumor immunity has received considerable attention. However, it is still restricted by low ROS production efficiency and insufficient immune activation, due to intricate redox homeostasis in the tumor microenvironment (TME). Herein, a metalloprotein-like hybrid nanozyme (FeS@GOx) is designed by in situ growth of nanozyme (ferrous sulfide, FeS) in a natural enzyme (glucose oxidase, GOx) to amplify ROS cascade for boosting chemodynamic immunotherapy. In FeS@GOx, GOx allows the conversion of endogenous glucose to gluconic acid and hydrogen peroxide, which provides favorable increasing hydrogen peroxide for subsequent Fenton reaction of FeS nanozymes, thus reinforcing ROS production. Notably, hydrogen sulfide (H
S) release is activated by the gluconic acid generation-related pH decrease, which can suppress the activity of endogenous thioredoxin reductase and catalase to further inhibit ROS elimination. Thus, FeS@GOx can sustainably amplify ROS accumulation and perturb intracellular redox homeostasis to improve chemodynamic therapy and trigger robust immunogenic cell death for effective immunotherapy combined with immune checkpoint blockade. This work proposes a feasible H
S amplified ROS cascade strategy employing a bioinspired hybrid nanozyme, providing a novel pathway to multi-enzyme-mediated TME modulation for precise and efficient chemodynamic immunotherapy.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37040018</pmid><doi>10.1002/adhm.202300385</doi><orcidid>https://orcid.org/0000-0002-7116-6919</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2023-09, Vol.12 (23), p.e2300385-e2300385 |
issn | 2192-2640 2192-2659 |
language | eng |
recordid | cdi_proquest_miscellaneous_2799827645 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Amplification Catalase Catalysts Cell death Enzymes Gluconic acid Glucose oxidase Homeostasis Hydrogen Hydrogen peroxide Hydrogen sulfide Immune checkpoint inhibitors Immune response Immunogenicity Immunotherapy Iron sulfides Reactive oxygen species Reductases Thioredoxin Tumor cells Tumor microenvironment Tumors |
title | Hydrogen Sulfide Gas Amplified ROS Cascade: FeS@GOx Hybrid Nanozyme Designed for Boosting Tumor Chemodynamic Immunotherapy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T10%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20Sulfide%20Gas%20Amplified%20ROS%20Cascade:%20FeS@GOx%20Hybrid%20Nanozyme%20Designed%20for%20Boosting%20Tumor%20Chemodynamic%20Immunotherapy&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Sun,%20Wanying&rft.date=2023-09-01&rft.volume=12&rft.issue=23&rft.spage=e2300385&rft.epage=e2300385&rft.pages=e2300385-e2300385&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202300385&rft_dat=%3Cproquest_cross%3E2799827645%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-5511476e1bc21af0e9986f03792f36c0ee98ae8edd008426e1955e8f051f0d553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2864076148&rft_id=info:pmid/37040018&rfr_iscdi=true |