Loading…

Hydrogen Sulfide Gas Amplified ROS Cascade: FeS@GOx Hybrid Nanozyme Designed for Boosting Tumor Chemodynamic Immunotherapy

Chemodynamic immunotherapy that utilizes catalysts to produce reactive oxygen species (ROS) for killing tumor cells and arousing antitumor immunity has received considerable attention. However, it is still restricted by low ROS production efficiency and insufficient immune activation, due to intrica...

Full description

Saved in:
Bibliographic Details
Published in:Advanced healthcare materials 2023-09, Vol.12 (23), p.e2300385-e2300385
Main Authors: Sun, Wanying, Zhu, Chengyuan, Song, Juan, Ji, Shi-Chen, Jiang, Bang-Ping, Liang, Hong, Shen, Xing-Can
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c323t-5511476e1bc21af0e9986f03792f36c0ee98ae8edd008426e1955e8f051f0d553
cites cdi_FETCH-LOGICAL-c323t-5511476e1bc21af0e9986f03792f36c0ee98ae8edd008426e1955e8f051f0d553
container_end_page e2300385
container_issue 23
container_start_page e2300385
container_title Advanced healthcare materials
container_volume 12
creator Sun, Wanying
Zhu, Chengyuan
Song, Juan
Ji, Shi-Chen
Jiang, Bang-Ping
Liang, Hong
Shen, Xing-Can
description Chemodynamic immunotherapy that utilizes catalysts to produce reactive oxygen species (ROS) for killing tumor cells and arousing antitumor immunity has received considerable attention. However, it is still restricted by low ROS production efficiency and insufficient immune activation, due to intricate redox homeostasis in the tumor microenvironment (TME). Herein, a metalloprotein-like hybrid nanozyme (FeS@GOx) is designed by in situ growth of nanozyme (ferrous sulfide, FeS) in a natural enzyme (glucose oxidase, GOx) to amplify ROS cascade for boosting chemodynamic immunotherapy. In FeS@GOx, GOx allows the conversion of endogenous glucose to gluconic acid and hydrogen peroxide, which provides favorable increasing hydrogen peroxide for subsequent Fenton reaction of FeS nanozymes, thus reinforcing ROS production. Notably, hydrogen sulfide (H S) release is activated by the gluconic acid generation-related pH decrease, which can suppress the activity of endogenous thioredoxin reductase and catalase to further inhibit ROS elimination. Thus, FeS@GOx can sustainably amplify ROS accumulation and perturb intracellular redox homeostasis to improve chemodynamic therapy and trigger robust immunogenic cell death for effective immunotherapy combined with immune checkpoint blockade. This work proposes a feasible H S amplified ROS cascade strategy employing a bioinspired hybrid nanozyme, providing a novel pathway to multi-enzyme-mediated TME modulation for precise and efficient chemodynamic immunotherapy.
doi_str_mv 10.1002/adhm.202300385
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2799827645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2799827645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-5511476e1bc21af0e9986f03792f36c0ee98ae8edd008426e1955e8f051f0d553</originalsourceid><addsrcrecordid>eNpdkUFrGzEQRkVpaEKaa49F0EsvdkfSalfbUxM3sQMhhjg5L_JqZCusVq7khW5-fWSS-lBdRgNvPoZ5hHxhMGUA_Ic2Wz_lwAWAUPIDOeOs5hNeyvrj8V_AKblI6RnyKyUrFftETkUFBQBTZ-RlMZoYNtjT1dBZZ5DOdaKXftc569DQh-WKznRqtcGf9AZXv-bLv3QxrqMz9F734WX0SH9jcps-0zZEehVC2rt-Qx8Hn9vZFn0wY6-9a-mt90Mf9luMejd-JidWdwkv3us5ebq5fpwtJnfL-e3s8m7SCi72EykZK6oS2brlTFvAulalBVHV3IqyBcRaaVRoDIAqeAZrKVFZkMyCkVKck-9vubsY_gyY9o13qcWu0z2GITW8yom8KosD-u0_9DkMsc_bNVzlU1YlK1Smpm9UG0NKEW2zi87rODYMmoOY5iCmOYrJA1_fY4e1R3PE_2kQr9nDh_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864076148</pqid></control><display><type>article</type><title>Hydrogen Sulfide Gas Amplified ROS Cascade: FeS@GOx Hybrid Nanozyme Designed for Boosting Tumor Chemodynamic Immunotherapy</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Sun, Wanying ; Zhu, Chengyuan ; Song, Juan ; Ji, Shi-Chen ; Jiang, Bang-Ping ; Liang, Hong ; Shen, Xing-Can</creator><creatorcontrib>Sun, Wanying ; Zhu, Chengyuan ; Song, Juan ; Ji, Shi-Chen ; Jiang, Bang-Ping ; Liang, Hong ; Shen, Xing-Can</creatorcontrib><description>Chemodynamic immunotherapy that utilizes catalysts to produce reactive oxygen species (ROS) for killing tumor cells and arousing antitumor immunity has received considerable attention. However, it is still restricted by low ROS production efficiency and insufficient immune activation, due to intricate redox homeostasis in the tumor microenvironment (TME). Herein, a metalloprotein-like hybrid nanozyme (FeS@GOx) is designed by in situ growth of nanozyme (ferrous sulfide, FeS) in a natural enzyme (glucose oxidase, GOx) to amplify ROS cascade for boosting chemodynamic immunotherapy. In FeS@GOx, GOx allows the conversion of endogenous glucose to gluconic acid and hydrogen peroxide, which provides favorable increasing hydrogen peroxide for subsequent Fenton reaction of FeS nanozymes, thus reinforcing ROS production. Notably, hydrogen sulfide (H S) release is activated by the gluconic acid generation-related pH decrease, which can suppress the activity of endogenous thioredoxin reductase and catalase to further inhibit ROS elimination. Thus, FeS@GOx can sustainably amplify ROS accumulation and perturb intracellular redox homeostasis to improve chemodynamic therapy and trigger robust immunogenic cell death for effective immunotherapy combined with immune checkpoint blockade. This work proposes a feasible H S amplified ROS cascade strategy employing a bioinspired hybrid nanozyme, providing a novel pathway to multi-enzyme-mediated TME modulation for precise and efficient chemodynamic immunotherapy.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202300385</identifier><identifier>PMID: 37040018</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Amplification ; Catalase ; Catalysts ; Cell death ; Enzymes ; Gluconic acid ; Glucose oxidase ; Homeostasis ; Hydrogen ; Hydrogen peroxide ; Hydrogen sulfide ; Immune checkpoint inhibitors ; Immune response ; Immunogenicity ; Immunotherapy ; Iron sulfides ; Reactive oxygen species ; Reductases ; Thioredoxin ; Tumor cells ; Tumor microenvironment ; Tumors</subject><ispartof>Advanced healthcare materials, 2023-09, Vol.12 (23), p.e2300385-e2300385</ispartof><rights>2023 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-5511476e1bc21af0e9986f03792f36c0ee98ae8edd008426e1955e8f051f0d553</citedby><cites>FETCH-LOGICAL-c323t-5511476e1bc21af0e9986f03792f36c0ee98ae8edd008426e1955e8f051f0d553</cites><orcidid>0000-0002-7116-6919</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37040018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Wanying</creatorcontrib><creatorcontrib>Zhu, Chengyuan</creatorcontrib><creatorcontrib>Song, Juan</creatorcontrib><creatorcontrib>Ji, Shi-Chen</creatorcontrib><creatorcontrib>Jiang, Bang-Ping</creatorcontrib><creatorcontrib>Liang, Hong</creatorcontrib><creatorcontrib>Shen, Xing-Can</creatorcontrib><title>Hydrogen Sulfide Gas Amplified ROS Cascade: FeS@GOx Hybrid Nanozyme Designed for Boosting Tumor Chemodynamic Immunotherapy</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Chemodynamic immunotherapy that utilizes catalysts to produce reactive oxygen species (ROS) for killing tumor cells and arousing antitumor immunity has received considerable attention. However, it is still restricted by low ROS production efficiency and insufficient immune activation, due to intricate redox homeostasis in the tumor microenvironment (TME). Herein, a metalloprotein-like hybrid nanozyme (FeS@GOx) is designed by in situ growth of nanozyme (ferrous sulfide, FeS) in a natural enzyme (glucose oxidase, GOx) to amplify ROS cascade for boosting chemodynamic immunotherapy. In FeS@GOx, GOx allows the conversion of endogenous glucose to gluconic acid and hydrogen peroxide, which provides favorable increasing hydrogen peroxide for subsequent Fenton reaction of FeS nanozymes, thus reinforcing ROS production. Notably, hydrogen sulfide (H S) release is activated by the gluconic acid generation-related pH decrease, which can suppress the activity of endogenous thioredoxin reductase and catalase to further inhibit ROS elimination. Thus, FeS@GOx can sustainably amplify ROS accumulation and perturb intracellular redox homeostasis to improve chemodynamic therapy and trigger robust immunogenic cell death for effective immunotherapy combined with immune checkpoint blockade. This work proposes a feasible H S amplified ROS cascade strategy employing a bioinspired hybrid nanozyme, providing a novel pathway to multi-enzyme-mediated TME modulation for precise and efficient chemodynamic immunotherapy.</description><subject>Amplification</subject><subject>Catalase</subject><subject>Catalysts</subject><subject>Cell death</subject><subject>Enzymes</subject><subject>Gluconic acid</subject><subject>Glucose oxidase</subject><subject>Homeostasis</subject><subject>Hydrogen</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen sulfide</subject><subject>Immune checkpoint inhibitors</subject><subject>Immune response</subject><subject>Immunogenicity</subject><subject>Immunotherapy</subject><subject>Iron sulfides</subject><subject>Reactive oxygen species</subject><subject>Reductases</subject><subject>Thioredoxin</subject><subject>Tumor cells</subject><subject>Tumor microenvironment</subject><subject>Tumors</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkUFrGzEQRkVpaEKaa49F0EsvdkfSalfbUxM3sQMhhjg5L_JqZCusVq7khW5-fWSS-lBdRgNvPoZ5hHxhMGUA_Ic2Wz_lwAWAUPIDOeOs5hNeyvrj8V_AKblI6RnyKyUrFftETkUFBQBTZ-RlMZoYNtjT1dBZZ5DOdaKXftc569DQh-WKznRqtcGf9AZXv-bLv3QxrqMz9F734WX0SH9jcps-0zZEehVC2rt-Qx8Hn9vZFn0wY6-9a-mt90Mf9luMejd-JidWdwkv3us5ebq5fpwtJnfL-e3s8m7SCi72EykZK6oS2brlTFvAulalBVHV3IqyBcRaaVRoDIAqeAZrKVFZkMyCkVKck-9vubsY_gyY9o13qcWu0z2GITW8yom8KosD-u0_9DkMsc_bNVzlU1YlK1Smpm9UG0NKEW2zi87rODYMmoOY5iCmOYrJA1_fY4e1R3PE_2kQr9nDh_A</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Sun, Wanying</creator><creator>Zhu, Chengyuan</creator><creator>Song, Juan</creator><creator>Ji, Shi-Chen</creator><creator>Jiang, Bang-Ping</creator><creator>Liang, Hong</creator><creator>Shen, Xing-Can</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7116-6919</orcidid></search><sort><creationdate>20230901</creationdate><title>Hydrogen Sulfide Gas Amplified ROS Cascade: FeS@GOx Hybrid Nanozyme Designed for Boosting Tumor Chemodynamic Immunotherapy</title><author>Sun, Wanying ; Zhu, Chengyuan ; Song, Juan ; Ji, Shi-Chen ; Jiang, Bang-Ping ; Liang, Hong ; Shen, Xing-Can</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-5511476e1bc21af0e9986f03792f36c0ee98ae8edd008426e1955e8f051f0d553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amplification</topic><topic>Catalase</topic><topic>Catalysts</topic><topic>Cell death</topic><topic>Enzymes</topic><topic>Gluconic acid</topic><topic>Glucose oxidase</topic><topic>Homeostasis</topic><topic>Hydrogen</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen sulfide</topic><topic>Immune checkpoint inhibitors</topic><topic>Immune response</topic><topic>Immunogenicity</topic><topic>Immunotherapy</topic><topic>Iron sulfides</topic><topic>Reactive oxygen species</topic><topic>Reductases</topic><topic>Thioredoxin</topic><topic>Tumor cells</topic><topic>Tumor microenvironment</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Wanying</creatorcontrib><creatorcontrib>Zhu, Chengyuan</creatorcontrib><creatorcontrib>Song, Juan</creatorcontrib><creatorcontrib>Ji, Shi-Chen</creatorcontrib><creatorcontrib>Jiang, Bang-Ping</creatorcontrib><creatorcontrib>Liang, Hong</creatorcontrib><creatorcontrib>Shen, Xing-Can</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Wanying</au><au>Zhu, Chengyuan</au><au>Song, Juan</au><au>Ji, Shi-Chen</au><au>Jiang, Bang-Ping</au><au>Liang, Hong</au><au>Shen, Xing-Can</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen Sulfide Gas Amplified ROS Cascade: FeS@GOx Hybrid Nanozyme Designed for Boosting Tumor Chemodynamic Immunotherapy</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>12</volume><issue>23</issue><spage>e2300385</spage><epage>e2300385</epage><pages>e2300385-e2300385</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>Chemodynamic immunotherapy that utilizes catalysts to produce reactive oxygen species (ROS) for killing tumor cells and arousing antitumor immunity has received considerable attention. However, it is still restricted by low ROS production efficiency and insufficient immune activation, due to intricate redox homeostasis in the tumor microenvironment (TME). Herein, a metalloprotein-like hybrid nanozyme (FeS@GOx) is designed by in situ growth of nanozyme (ferrous sulfide, FeS) in a natural enzyme (glucose oxidase, GOx) to amplify ROS cascade for boosting chemodynamic immunotherapy. In FeS@GOx, GOx allows the conversion of endogenous glucose to gluconic acid and hydrogen peroxide, which provides favorable increasing hydrogen peroxide for subsequent Fenton reaction of FeS nanozymes, thus reinforcing ROS production. Notably, hydrogen sulfide (H S) release is activated by the gluconic acid generation-related pH decrease, which can suppress the activity of endogenous thioredoxin reductase and catalase to further inhibit ROS elimination. Thus, FeS@GOx can sustainably amplify ROS accumulation and perturb intracellular redox homeostasis to improve chemodynamic therapy and trigger robust immunogenic cell death for effective immunotherapy combined with immune checkpoint blockade. This work proposes a feasible H S amplified ROS cascade strategy employing a bioinspired hybrid nanozyme, providing a novel pathway to multi-enzyme-mediated TME modulation for precise and efficient chemodynamic immunotherapy.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37040018</pmid><doi>10.1002/adhm.202300385</doi><orcidid>https://orcid.org/0000-0002-7116-6919</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2023-09, Vol.12 (23), p.e2300385-e2300385
issn 2192-2640
2192-2659
language eng
recordid cdi_proquest_miscellaneous_2799827645
source Wiley-Blackwell Read & Publish Collection
subjects Amplification
Catalase
Catalysts
Cell death
Enzymes
Gluconic acid
Glucose oxidase
Homeostasis
Hydrogen
Hydrogen peroxide
Hydrogen sulfide
Immune checkpoint inhibitors
Immune response
Immunogenicity
Immunotherapy
Iron sulfides
Reactive oxygen species
Reductases
Thioredoxin
Tumor cells
Tumor microenvironment
Tumors
title Hydrogen Sulfide Gas Amplified ROS Cascade: FeS@GOx Hybrid Nanozyme Designed for Boosting Tumor Chemodynamic Immunotherapy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T10%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20Sulfide%20Gas%20Amplified%20ROS%20Cascade:%20FeS@GOx%20Hybrid%20Nanozyme%20Designed%20for%20Boosting%20Tumor%20Chemodynamic%20Immunotherapy&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Sun,%20Wanying&rft.date=2023-09-01&rft.volume=12&rft.issue=23&rft.spage=e2300385&rft.epage=e2300385&rft.pages=e2300385-e2300385&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202300385&rft_dat=%3Cproquest_cross%3E2799827645%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-5511476e1bc21af0e9986f03792f36c0ee98ae8edd008426e1955e8f051f0d553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2864076148&rft_id=info:pmid/37040018&rfr_iscdi=true