Loading…

Solid‐State Quad‐Nanopore Array for High‐Resolution Single‐Molecule Analysis and Discrimination

The ability to detect and distinguish biomolecules at the single‐molecule level is at the forefront of today's biomedicine and analytical chemistry research. Increasing the dwell time of individual biomolecules in the sensing spot can greatly enhance the sensitivity of single‐molecule methods....

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2023-06, Vol.35 (24), p.e2211399-n/a
Main Authors: Hu, Rui, Zhu, Rui, Wei, Guanghao, Wang, Zhan, Gu, Zhi‐Yuan, Wanunu, Meni, Zhao, Qing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3739-47975a7839722a3c83c8d08ea0846811908e877eea7019a4164b258430e098053
cites cdi_FETCH-LOGICAL-c3739-47975a7839722a3c83c8d08ea0846811908e877eea7019a4164b258430e098053
container_end_page n/a
container_issue 24
container_start_page e2211399
container_title Advanced materials (Weinheim)
container_volume 35
creator Hu, Rui
Zhu, Rui
Wei, Guanghao
Wang, Zhan
Gu, Zhi‐Yuan
Wanunu, Meni
Zhao, Qing
description The ability to detect and distinguish biomolecules at the single‐molecule level is at the forefront of today's biomedicine and analytical chemistry research. Increasing the dwell time of individual biomolecules in the sensing spot can greatly enhance the sensitivity of single‐molecule methods. This is particularly important in solid‐state nanopore sensing, where the detection of small molecules is often limited by the transit dwell time and insufficient temporal resolution. Here, a quad‐nanopore is introduced, a square array of four nanopores (with a space interval of 30–50 nm) to improve the detection sensitivity through electric field manipulation in the access region. It is shown that dwell times of short DNA strands (200 bp) are prolonged in quad‐nanopores as compared to single nanopores of the same diameter. The dependence of dwell times on the quad‐pore spacing is investigated and it is found that the “retarding effect” increases with decreasing space intervals. Furthermore, ultra‐short DNA (50 bp) detection is demonstrated using a 10 nm diameter quad‐nanopore array, which is hardly detected by a single nanopore. Finally, the general utility of quad‐nanopores has been verified by successful discrimination of two kinds of small molecules, metal‐organic cage and bovine serum albumin (BSA). Quad‐nanopore arrays are demonstrated to improve the sensitivity of solid‐state nanopore‐based sensing. The four closely arranged nanopores finely made by helium ion microscope alter the electric field distribution in the access region of the solid‐state nanopores, creating regions that have a “retarding effect” for a single charged molecule, as proved by experiments and simulations.
doi_str_mv 10.1002/adma.202211399
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2799828873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2799828873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3739-47975a7839722a3c83c8d08ea0846811908e877eea7019a4164b258430e098053</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhoMotn5cPcqCFy9bJ8nuJjkWq1bwA62el-luWiPppiZdpDd_gr_RX2JK_QAvwkAmmSdvMvMSckChRwHYCdYz7DFgjFKu1Abp0pzRNAOVb5IuKJ6nqshkh-yE8AwAqoBim3S4AC4yxrtkOnLW1B9v76MFLnRy1-Jqc4ONmzuvk773uEwmzidDM32KlXsdnG0XxjXJyDRTq-PZtbO6am2kG7TLYEKCTZ0MTKi8mZkGV_Qe2ZqgDXr_a90lj-dnD6fD9Or24vK0f5VWXHCVZkKJHIXkSjCGvJIxapAaQWaFpFTFXAqhNQqgCjNaZGOWy4yDBiUh57vkeK079-6l1WFRzuI_tLXYaNeGkgmlJJNS8Ige_UGfXetjC5GSLI8PcFFEqremKu9C8HpSzmNX6JclhXJlQbmyoPyxIF44_JJtxzNd_-DfM4-AWgOvxurlP3Jlf3Dd_xX_BPzMlL4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825701376</pqid></control><display><type>article</type><title>Solid‐State Quad‐Nanopore Array for High‐Resolution Single‐Molecule Analysis and Discrimination</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Hu, Rui ; Zhu, Rui ; Wei, Guanghao ; Wang, Zhan ; Gu, Zhi‐Yuan ; Wanunu, Meni ; Zhao, Qing</creator><creatorcontrib>Hu, Rui ; Zhu, Rui ; Wei, Guanghao ; Wang, Zhan ; Gu, Zhi‐Yuan ; Wanunu, Meni ; Zhao, Qing</creatorcontrib><description>The ability to detect and distinguish biomolecules at the single‐molecule level is at the forefront of today's biomedicine and analytical chemistry research. Increasing the dwell time of individual biomolecules in the sensing spot can greatly enhance the sensitivity of single‐molecule methods. This is particularly important in solid‐state nanopore sensing, where the detection of small molecules is often limited by the transit dwell time and insufficient temporal resolution. Here, a quad‐nanopore is introduced, a square array of four nanopores (with a space interval of 30–50 nm) to improve the detection sensitivity through electric field manipulation in the access region. It is shown that dwell times of short DNA strands (200 bp) are prolonged in quad‐nanopores as compared to single nanopores of the same diameter. The dependence of dwell times on the quad‐pore spacing is investigated and it is found that the “retarding effect” increases with decreasing space intervals. Furthermore, ultra‐short DNA (50 bp) detection is demonstrated using a 10 nm diameter quad‐nanopore array, which is hardly detected by a single nanopore. Finally, the general utility of quad‐nanopores has been verified by successful discrimination of two kinds of small molecules, metal‐organic cage and bovine serum albumin (BSA). Quad‐nanopore arrays are demonstrated to improve the sensitivity of solid‐state nanopore‐based sensing. The four closely arranged nanopores finely made by helium ion microscope alter the electric field distribution in the access region of the solid‐state nanopores, creating regions that have a “retarding effect” for a single charged molecule, as proved by experiments and simulations.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202211399</identifier><identifier>PMID: 37037423</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Analytical chemistry ; Arrays ; Biomolecules ; biosensors ; DNA - chemistry ; Dwell time ; Electric fields ; finite‐element simulations ; Materials science ; Metals ; Nanopores ; Nanotechnology ; Sensitivity enhancement ; Serum albumin ; Single Molecule Imaging - methods ; single‐molecule detection ; solid‐state nanopores ; Temporal resolution</subject><ispartof>Advanced materials (Weinheim), 2023-06, Vol.35 (24), p.e2211399-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3739-47975a7839722a3c83c8d08ea0846811908e877eea7019a4164b258430e098053</citedby><cites>FETCH-LOGICAL-c3739-47975a7839722a3c83c8d08ea0846811908e877eea7019a4164b258430e098053</cites><orcidid>0000-0002-9837-0004 ; 0000-0002-6245-4759 ; 0000-0003-3374-6901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37037423$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Rui</creatorcontrib><creatorcontrib>Zhu, Rui</creatorcontrib><creatorcontrib>Wei, Guanghao</creatorcontrib><creatorcontrib>Wang, Zhan</creatorcontrib><creatorcontrib>Gu, Zhi‐Yuan</creatorcontrib><creatorcontrib>Wanunu, Meni</creatorcontrib><creatorcontrib>Zhao, Qing</creatorcontrib><title>Solid‐State Quad‐Nanopore Array for High‐Resolution Single‐Molecule Analysis and Discrimination</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The ability to detect and distinguish biomolecules at the single‐molecule level is at the forefront of today's biomedicine and analytical chemistry research. Increasing the dwell time of individual biomolecules in the sensing spot can greatly enhance the sensitivity of single‐molecule methods. This is particularly important in solid‐state nanopore sensing, where the detection of small molecules is often limited by the transit dwell time and insufficient temporal resolution. Here, a quad‐nanopore is introduced, a square array of four nanopores (with a space interval of 30–50 nm) to improve the detection sensitivity through electric field manipulation in the access region. It is shown that dwell times of short DNA strands (200 bp) are prolonged in quad‐nanopores as compared to single nanopores of the same diameter. The dependence of dwell times on the quad‐pore spacing is investigated and it is found that the “retarding effect” increases with decreasing space intervals. Furthermore, ultra‐short DNA (50 bp) detection is demonstrated using a 10 nm diameter quad‐nanopore array, which is hardly detected by a single nanopore. Finally, the general utility of quad‐nanopores has been verified by successful discrimination of two kinds of small molecules, metal‐organic cage and bovine serum albumin (BSA). Quad‐nanopore arrays are demonstrated to improve the sensitivity of solid‐state nanopore‐based sensing. The four closely arranged nanopores finely made by helium ion microscope alter the electric field distribution in the access region of the solid‐state nanopores, creating regions that have a “retarding effect” for a single charged molecule, as proved by experiments and simulations.</description><subject>Analytical chemistry</subject><subject>Arrays</subject><subject>Biomolecules</subject><subject>biosensors</subject><subject>DNA - chemistry</subject><subject>Dwell time</subject><subject>Electric fields</subject><subject>finite‐element simulations</subject><subject>Materials science</subject><subject>Metals</subject><subject>Nanopores</subject><subject>Nanotechnology</subject><subject>Sensitivity enhancement</subject><subject>Serum albumin</subject><subject>Single Molecule Imaging - methods</subject><subject>single‐molecule detection</subject><subject>solid‐state nanopores</subject><subject>Temporal resolution</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LAzEQhoMotn5cPcqCFy9bJ8nuJjkWq1bwA62el-luWiPppiZdpDd_gr_RX2JK_QAvwkAmmSdvMvMSckChRwHYCdYz7DFgjFKu1Abp0pzRNAOVb5IuKJ6nqshkh-yE8AwAqoBim3S4AC4yxrtkOnLW1B9v76MFLnRy1-Jqc4ONmzuvk773uEwmzidDM32KlXsdnG0XxjXJyDRTq-PZtbO6am2kG7TLYEKCTZ0MTKi8mZkGV_Qe2ZqgDXr_a90lj-dnD6fD9Or24vK0f5VWXHCVZkKJHIXkSjCGvJIxapAaQWaFpFTFXAqhNQqgCjNaZGOWy4yDBiUh57vkeK079-6l1WFRzuI_tLXYaNeGkgmlJJNS8Ige_UGfXetjC5GSLI8PcFFEqremKu9C8HpSzmNX6JclhXJlQbmyoPyxIF44_JJtxzNd_-DfM4-AWgOvxurlP3Jlf3Dd_xX_BPzMlL4</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Hu, Rui</creator><creator>Zhu, Rui</creator><creator>Wei, Guanghao</creator><creator>Wang, Zhan</creator><creator>Gu, Zhi‐Yuan</creator><creator>Wanunu, Meni</creator><creator>Zhao, Qing</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9837-0004</orcidid><orcidid>https://orcid.org/0000-0002-6245-4759</orcidid><orcidid>https://orcid.org/0000-0003-3374-6901</orcidid></search><sort><creationdate>20230601</creationdate><title>Solid‐State Quad‐Nanopore Array for High‐Resolution Single‐Molecule Analysis and Discrimination</title><author>Hu, Rui ; Zhu, Rui ; Wei, Guanghao ; Wang, Zhan ; Gu, Zhi‐Yuan ; Wanunu, Meni ; Zhao, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3739-47975a7839722a3c83c8d08ea0846811908e877eea7019a4164b258430e098053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical chemistry</topic><topic>Arrays</topic><topic>Biomolecules</topic><topic>biosensors</topic><topic>DNA - chemistry</topic><topic>Dwell time</topic><topic>Electric fields</topic><topic>finite‐element simulations</topic><topic>Materials science</topic><topic>Metals</topic><topic>Nanopores</topic><topic>Nanotechnology</topic><topic>Sensitivity enhancement</topic><topic>Serum albumin</topic><topic>Single Molecule Imaging - methods</topic><topic>single‐molecule detection</topic><topic>solid‐state nanopores</topic><topic>Temporal resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Rui</creatorcontrib><creatorcontrib>Zhu, Rui</creatorcontrib><creatorcontrib>Wei, Guanghao</creatorcontrib><creatorcontrib>Wang, Zhan</creatorcontrib><creatorcontrib>Gu, Zhi‐Yuan</creatorcontrib><creatorcontrib>Wanunu, Meni</creatorcontrib><creatorcontrib>Zhao, Qing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Rui</au><au>Zhu, Rui</au><au>Wei, Guanghao</au><au>Wang, Zhan</au><au>Gu, Zhi‐Yuan</au><au>Wanunu, Meni</au><au>Zhao, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid‐State Quad‐Nanopore Array for High‐Resolution Single‐Molecule Analysis and Discrimination</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>35</volume><issue>24</issue><spage>e2211399</spage><epage>n/a</epage><pages>e2211399-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The ability to detect and distinguish biomolecules at the single‐molecule level is at the forefront of today's biomedicine and analytical chemistry research. Increasing the dwell time of individual biomolecules in the sensing spot can greatly enhance the sensitivity of single‐molecule methods. This is particularly important in solid‐state nanopore sensing, where the detection of small molecules is often limited by the transit dwell time and insufficient temporal resolution. Here, a quad‐nanopore is introduced, a square array of four nanopores (with a space interval of 30–50 nm) to improve the detection sensitivity through electric field manipulation in the access region. It is shown that dwell times of short DNA strands (200 bp) are prolonged in quad‐nanopores as compared to single nanopores of the same diameter. The dependence of dwell times on the quad‐pore spacing is investigated and it is found that the “retarding effect” increases with decreasing space intervals. Furthermore, ultra‐short DNA (50 bp) detection is demonstrated using a 10 nm diameter quad‐nanopore array, which is hardly detected by a single nanopore. Finally, the general utility of quad‐nanopores has been verified by successful discrimination of two kinds of small molecules, metal‐organic cage and bovine serum albumin (BSA). Quad‐nanopore arrays are demonstrated to improve the sensitivity of solid‐state nanopore‐based sensing. The four closely arranged nanopores finely made by helium ion microscope alter the electric field distribution in the access region of the solid‐state nanopores, creating regions that have a “retarding effect” for a single charged molecule, as proved by experiments and simulations.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37037423</pmid><doi>10.1002/adma.202211399</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9837-0004</orcidid><orcidid>https://orcid.org/0000-0002-6245-4759</orcidid><orcidid>https://orcid.org/0000-0003-3374-6901</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-06, Vol.35 (24), p.e2211399-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2799828873
source Wiley-Blackwell Read & Publish Collection
subjects Analytical chemistry
Arrays
Biomolecules
biosensors
DNA - chemistry
Dwell time
Electric fields
finite‐element simulations
Materials science
Metals
Nanopores
Nanotechnology
Sensitivity enhancement
Serum albumin
Single Molecule Imaging - methods
single‐molecule detection
solid‐state nanopores
Temporal resolution
title Solid‐State Quad‐Nanopore Array for High‐Resolution Single‐Molecule Analysis and Discrimination
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A58%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid%E2%80%90State%20Quad%E2%80%90Nanopore%20Array%20for%20High%E2%80%90Resolution%20Single%E2%80%90Molecule%20Analysis%20and%20Discrimination&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Hu,%20Rui&rft.date=2023-06-01&rft.volume=35&rft.issue=24&rft.spage=e2211399&rft.epage=n/a&rft.pages=e2211399-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202211399&rft_dat=%3Cproquest_cross%3E2799828873%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3739-47975a7839722a3c83c8d08ea0846811908e877eea7019a4164b258430e098053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2825701376&rft_id=info:pmid/37037423&rfr_iscdi=true