Loading…

Controlling the losing probability in a monotone game

We deal with a complex game between Alice and Bob where each contender’s probability of victory grows monotonically by unknown amounts with the resources employed. For a fixed effort on Alice’s part, Bob increases his resources on the basis of the results for each round (victory, tie or defeat) with...

Full description

Saved in:
Bibliographic Details
Published in:Information sciences 2006-05, Vol.176 (10), p.1395-1416
Main Authors: Apolloni, Bruno, Bassis, Simone, Gaito, Sabrina, Malchiodi, Dario, Zoppis, Italo
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c328t-70c32a853f7663a337bd5e2ca08fd54b4249895a2ed8635e5f201ed98f845a023
cites
container_end_page 1416
container_issue 10
container_start_page 1395
container_title Information sciences
container_volume 176
creator Apolloni, Bruno
Bassis, Simone
Gaito, Sabrina
Malchiodi, Dario
Zoppis, Italo
description We deal with a complex game between Alice and Bob where each contender’s probability of victory grows monotonically by unknown amounts with the resources employed. For a fixed effort on Alice’s part, Bob increases his resources on the basis of the results for each round (victory, tie or defeat) with the aim of reducing the probability of defeat to below a given threshold. We read this goal in terms of computing a confidence interval for the probability of losing and realize that the moves in some contests may bring in an indeterminacy trap: in certain games Bob cannot simultaneously have both a low probability-of-defeat measure and a narrow confidence interval. We use the inferential mechanism called twisting argument to compute the above interval on the basis of two joint statistics. Careful use of such statistics allows us to avoid indeterminacy.
doi_str_mv 10.1016/j.ins.2005.05.004
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28008471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025505001787</els_id><sourcerecordid>28008471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-70c32a853f7663a337bd5e2ca08fd54b4249895a2ed8635e5f201ed98f845a023</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoDvPXkrfUlTdoUT7L4BQte9BzS9nXNkiZr0hX235tSz8LAvMPMe_OGkFsKBQVa3e8L42LBAEQxA_gZWVFZs7xiDT0nKwAGOTAhLslVjHtIirqqVkRsvJuCt9a4XTZ9YWZ9nMdD8K1ujTXTKTMu09nonZ-8w2ynR7wmF4O2EW_-eE0-n58-Nq_59v3lbfO4zbuSySmvIbGWohzSrVKXZd32AlmnQQ694C1nvJGN0Ax7WZUCxcCAYt_IQXKhgZVrcrfsTXG-jxgnNZrYobXaoT9GxSSA5DVNQroIu-BjDDioQzCjDidFQc0Fqb1KBam5IDUDePI8LB5MH_wYDCp2Bl2HvQnYTar35h_3L3cfbQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28008471</pqid></control><display><type>article</type><title>Controlling the losing probability in a monotone game</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Apolloni, Bruno ; Bassis, Simone ; Gaito, Sabrina ; Malchiodi, Dario ; Zoppis, Italo</creator><creatorcontrib>Apolloni, Bruno ; Bassis, Simone ; Gaito, Sabrina ; Malchiodi, Dario ; Zoppis, Italo</creatorcontrib><description>We deal with a complex game between Alice and Bob where each contender’s probability of victory grows monotonically by unknown amounts with the resources employed. For a fixed effort on Alice’s part, Bob increases his resources on the basis of the results for each round (victory, tie or defeat) with the aim of reducing the probability of defeat to below a given threshold. We read this goal in terms of computing a confidence interval for the probability of losing and realize that the moves in some contests may bring in an indeterminacy trap: in certain games Bob cannot simultaneously have both a low probability-of-defeat measure and a narrow confidence interval. We use the inferential mechanism called twisting argument to compute the above interval on the basis of two joint statistics. Careful use of such statistics allows us to avoid indeterminacy.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2005.05.004</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Algorithmic inference ; Conflict modeling ; Stochastic games</subject><ispartof>Information sciences, 2006-05, Vol.176 (10), p.1395-1416</ispartof><rights>2005 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-70c32a853f7663a337bd5e2ca08fd54b4249895a2ed8635e5f201ed98f845a023</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Apolloni, Bruno</creatorcontrib><creatorcontrib>Bassis, Simone</creatorcontrib><creatorcontrib>Gaito, Sabrina</creatorcontrib><creatorcontrib>Malchiodi, Dario</creatorcontrib><creatorcontrib>Zoppis, Italo</creatorcontrib><title>Controlling the losing probability in a monotone game</title><title>Information sciences</title><description>We deal with a complex game between Alice and Bob where each contender’s probability of victory grows monotonically by unknown amounts with the resources employed. For a fixed effort on Alice’s part, Bob increases his resources on the basis of the results for each round (victory, tie or defeat) with the aim of reducing the probability of defeat to below a given threshold. We read this goal in terms of computing a confidence interval for the probability of losing and realize that the moves in some contests may bring in an indeterminacy trap: in certain games Bob cannot simultaneously have both a low probability-of-defeat measure and a narrow confidence interval. We use the inferential mechanism called twisting argument to compute the above interval on the basis of two joint statistics. Careful use of such statistics allows us to avoid indeterminacy.</description><subject>Algorithmic inference</subject><subject>Conflict modeling</subject><subject>Stochastic games</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoDvPXkrfUlTdoUT7L4BQte9BzS9nXNkiZr0hX235tSz8LAvMPMe_OGkFsKBQVa3e8L42LBAEQxA_gZWVFZs7xiDT0nKwAGOTAhLslVjHtIirqqVkRsvJuCt9a4XTZ9YWZ9nMdD8K1ujTXTKTMu09nonZ-8w2ynR7wmF4O2EW_-eE0-n58-Nq_59v3lbfO4zbuSySmvIbGWohzSrVKXZd32AlmnQQ694C1nvJGN0Ax7WZUCxcCAYt_IQXKhgZVrcrfsTXG-jxgnNZrYobXaoT9GxSSA5DVNQroIu-BjDDioQzCjDidFQc0Fqb1KBam5IDUDePI8LB5MH_wYDCp2Bl2HvQnYTar35h_3L3cfbQQ</recordid><startdate>20060522</startdate><enddate>20060522</enddate><creator>Apolloni, Bruno</creator><creator>Bassis, Simone</creator><creator>Gaito, Sabrina</creator><creator>Malchiodi, Dario</creator><creator>Zoppis, Italo</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060522</creationdate><title>Controlling the losing probability in a monotone game</title><author>Apolloni, Bruno ; Bassis, Simone ; Gaito, Sabrina ; Malchiodi, Dario ; Zoppis, Italo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-70c32a853f7663a337bd5e2ca08fd54b4249895a2ed8635e5f201ed98f845a023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithmic inference</topic><topic>Conflict modeling</topic><topic>Stochastic games</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Apolloni, Bruno</creatorcontrib><creatorcontrib>Bassis, Simone</creatorcontrib><creatorcontrib>Gaito, Sabrina</creatorcontrib><creatorcontrib>Malchiodi, Dario</creatorcontrib><creatorcontrib>Zoppis, Italo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Apolloni, Bruno</au><au>Bassis, Simone</au><au>Gaito, Sabrina</au><au>Malchiodi, Dario</au><au>Zoppis, Italo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling the losing probability in a monotone game</atitle><jtitle>Information sciences</jtitle><date>2006-05-22</date><risdate>2006</risdate><volume>176</volume><issue>10</issue><spage>1395</spage><epage>1416</epage><pages>1395-1416</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>We deal with a complex game between Alice and Bob where each contender’s probability of victory grows monotonically by unknown amounts with the resources employed. For a fixed effort on Alice’s part, Bob increases his resources on the basis of the results for each round (victory, tie or defeat) with the aim of reducing the probability of defeat to below a given threshold. We read this goal in terms of computing a confidence interval for the probability of losing and realize that the moves in some contests may bring in an indeterminacy trap: in certain games Bob cannot simultaneously have both a low probability-of-defeat measure and a narrow confidence interval. We use the inferential mechanism called twisting argument to compute the above interval on the basis of two joint statistics. Careful use of such statistics allows us to avoid indeterminacy.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2005.05.004</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0255
ispartof Information sciences, 2006-05, Vol.176 (10), p.1395-1416
issn 0020-0255
1872-6291
language eng
recordid cdi_proquest_miscellaneous_28008471
source ScienceDirect Freedom Collection 2022-2024
subjects Algorithmic inference
Conflict modeling
Stochastic games
title Controlling the losing probability in a monotone game
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A30%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20the%20losing%20probability%20in%20a%20monotone%20game&rft.jtitle=Information%20sciences&rft.au=Apolloni,%20Bruno&rft.date=2006-05-22&rft.volume=176&rft.issue=10&rft.spage=1395&rft.epage=1416&rft.pages=1395-1416&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2005.05.004&rft_dat=%3Cproquest_cross%3E28008471%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-70c32a853f7663a337bd5e2ca08fd54b4249895a2ed8635e5f201ed98f845a023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28008471&rft_id=info:pmid/&rfr_iscdi=true