Loading…
Controlling the losing probability in a monotone game
We deal with a complex game between Alice and Bob where each contender’s probability of victory grows monotonically by unknown amounts with the resources employed. For a fixed effort on Alice’s part, Bob increases his resources on the basis of the results for each round (victory, tie or defeat) with...
Saved in:
Published in: | Information sciences 2006-05, Vol.176 (10), p.1395-1416 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c328t-70c32a853f7663a337bd5e2ca08fd54b4249895a2ed8635e5f201ed98f845a023 |
---|---|
cites | |
container_end_page | 1416 |
container_issue | 10 |
container_start_page | 1395 |
container_title | Information sciences |
container_volume | 176 |
creator | Apolloni, Bruno Bassis, Simone Gaito, Sabrina Malchiodi, Dario Zoppis, Italo |
description | We deal with a complex game between Alice and Bob where each contender’s probability of victory grows monotonically by unknown amounts with the resources employed. For a fixed effort on Alice’s part, Bob increases his resources on the basis of the results for each round (victory, tie or defeat) with the aim of reducing the probability of defeat to below a given threshold. We read this goal in terms of computing a confidence interval for the probability of losing and realize that the moves in some contests may bring in an indeterminacy trap: in certain games Bob cannot simultaneously have both a low probability-of-defeat measure and a narrow confidence interval. We use the inferential mechanism called
twisting argument to compute the above interval on the basis of two joint statistics. Careful use of such statistics allows us to avoid indeterminacy. |
doi_str_mv | 10.1016/j.ins.2005.05.004 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28008471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025505001787</els_id><sourcerecordid>28008471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-70c32a853f7663a337bd5e2ca08fd54b4249895a2ed8635e5f201ed98f845a023</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoDvPXkrfUlTdoUT7L4BQte9BzS9nXNkiZr0hX235tSz8LAvMPMe_OGkFsKBQVa3e8L42LBAEQxA_gZWVFZs7xiDT0nKwAGOTAhLslVjHtIirqqVkRsvJuCt9a4XTZ9YWZ9nMdD8K1ujTXTKTMu09nonZ-8w2ynR7wmF4O2EW_-eE0-n58-Nq_59v3lbfO4zbuSySmvIbGWohzSrVKXZd32AlmnQQ694C1nvJGN0Ax7WZUCxcCAYt_IQXKhgZVrcrfsTXG-jxgnNZrYobXaoT9GxSSA5DVNQroIu-BjDDioQzCjDidFQc0Fqb1KBam5IDUDePI8LB5MH_wYDCp2Bl2HvQnYTar35h_3L3cfbQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28008471</pqid></control><display><type>article</type><title>Controlling the losing probability in a monotone game</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Apolloni, Bruno ; Bassis, Simone ; Gaito, Sabrina ; Malchiodi, Dario ; Zoppis, Italo</creator><creatorcontrib>Apolloni, Bruno ; Bassis, Simone ; Gaito, Sabrina ; Malchiodi, Dario ; Zoppis, Italo</creatorcontrib><description>We deal with a complex game between Alice and Bob where each contender’s probability of victory grows monotonically by unknown amounts with the resources employed. For a fixed effort on Alice’s part, Bob increases his resources on the basis of the results for each round (victory, tie or defeat) with the aim of reducing the probability of defeat to below a given threshold. We read this goal in terms of computing a confidence interval for the probability of losing and realize that the moves in some contests may bring in an indeterminacy trap: in certain games Bob cannot simultaneously have both a low probability-of-defeat measure and a narrow confidence interval. We use the inferential mechanism called
twisting argument to compute the above interval on the basis of two joint statistics. Careful use of such statistics allows us to avoid indeterminacy.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2005.05.004</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Algorithmic inference ; Conflict modeling ; Stochastic games</subject><ispartof>Information sciences, 2006-05, Vol.176 (10), p.1395-1416</ispartof><rights>2005 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-70c32a853f7663a337bd5e2ca08fd54b4249895a2ed8635e5f201ed98f845a023</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Apolloni, Bruno</creatorcontrib><creatorcontrib>Bassis, Simone</creatorcontrib><creatorcontrib>Gaito, Sabrina</creatorcontrib><creatorcontrib>Malchiodi, Dario</creatorcontrib><creatorcontrib>Zoppis, Italo</creatorcontrib><title>Controlling the losing probability in a monotone game</title><title>Information sciences</title><description>We deal with a complex game between Alice and Bob where each contender’s probability of victory grows monotonically by unknown amounts with the resources employed. For a fixed effort on Alice’s part, Bob increases his resources on the basis of the results for each round (victory, tie or defeat) with the aim of reducing the probability of defeat to below a given threshold. We read this goal in terms of computing a confidence interval for the probability of losing and realize that the moves in some contests may bring in an indeterminacy trap: in certain games Bob cannot simultaneously have both a low probability-of-defeat measure and a narrow confidence interval. We use the inferential mechanism called
twisting argument to compute the above interval on the basis of two joint statistics. Careful use of such statistics allows us to avoid indeterminacy.</description><subject>Algorithmic inference</subject><subject>Conflict modeling</subject><subject>Stochastic games</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoDvPXkrfUlTdoUT7L4BQte9BzS9nXNkiZr0hX235tSz8LAvMPMe_OGkFsKBQVa3e8L42LBAEQxA_gZWVFZs7xiDT0nKwAGOTAhLslVjHtIirqqVkRsvJuCt9a4XTZ9YWZ9nMdD8K1ujTXTKTMu09nonZ-8w2ynR7wmF4O2EW_-eE0-n58-Nq_59v3lbfO4zbuSySmvIbGWohzSrVKXZd32AlmnQQ694C1nvJGN0Ax7WZUCxcCAYt_IQXKhgZVrcrfsTXG-jxgnNZrYobXaoT9GxSSA5DVNQroIu-BjDDioQzCjDidFQc0Fqb1KBam5IDUDePI8LB5MH_wYDCp2Bl2HvQnYTar35h_3L3cfbQQ</recordid><startdate>20060522</startdate><enddate>20060522</enddate><creator>Apolloni, Bruno</creator><creator>Bassis, Simone</creator><creator>Gaito, Sabrina</creator><creator>Malchiodi, Dario</creator><creator>Zoppis, Italo</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060522</creationdate><title>Controlling the losing probability in a monotone game</title><author>Apolloni, Bruno ; Bassis, Simone ; Gaito, Sabrina ; Malchiodi, Dario ; Zoppis, Italo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-70c32a853f7663a337bd5e2ca08fd54b4249895a2ed8635e5f201ed98f845a023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithmic inference</topic><topic>Conflict modeling</topic><topic>Stochastic games</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Apolloni, Bruno</creatorcontrib><creatorcontrib>Bassis, Simone</creatorcontrib><creatorcontrib>Gaito, Sabrina</creatorcontrib><creatorcontrib>Malchiodi, Dario</creatorcontrib><creatorcontrib>Zoppis, Italo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Apolloni, Bruno</au><au>Bassis, Simone</au><au>Gaito, Sabrina</au><au>Malchiodi, Dario</au><au>Zoppis, Italo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling the losing probability in a monotone game</atitle><jtitle>Information sciences</jtitle><date>2006-05-22</date><risdate>2006</risdate><volume>176</volume><issue>10</issue><spage>1395</spage><epage>1416</epage><pages>1395-1416</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>We deal with a complex game between Alice and Bob where each contender’s probability of victory grows monotonically by unknown amounts with the resources employed. For a fixed effort on Alice’s part, Bob increases his resources on the basis of the results for each round (victory, tie or defeat) with the aim of reducing the probability of defeat to below a given threshold. We read this goal in terms of computing a confidence interval for the probability of losing and realize that the moves in some contests may bring in an indeterminacy trap: in certain games Bob cannot simultaneously have both a low probability-of-defeat measure and a narrow confidence interval. We use the inferential mechanism called
twisting argument to compute the above interval on the basis of two joint statistics. Careful use of such statistics allows us to avoid indeterminacy.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2005.05.004</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-0255 |
ispartof | Information sciences, 2006-05, Vol.176 (10), p.1395-1416 |
issn | 0020-0255 1872-6291 |
language | eng |
recordid | cdi_proquest_miscellaneous_28008471 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Algorithmic inference Conflict modeling Stochastic games |
title | Controlling the losing probability in a monotone game |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A30%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20the%20losing%20probability%20in%20a%20monotone%20game&rft.jtitle=Information%20sciences&rft.au=Apolloni,%20Bruno&rft.date=2006-05-22&rft.volume=176&rft.issue=10&rft.spage=1395&rft.epage=1416&rft.pages=1395-1416&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2005.05.004&rft_dat=%3Cproquest_cross%3E28008471%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-70c32a853f7663a337bd5e2ca08fd54b4249895a2ed8635e5f201ed98f845a023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28008471&rft_id=info:pmid/&rfr_iscdi=true |