Loading…

Computational Improvements Reveal Great Bacterial Diversity and High Metal Toxicity in Soil

The complexity of soil bacterial communities has thus far confounded effective measurement. However, with improved analytical methods, we show that the abundance distribution and total diversity can be deciphered. Reanalysis of reassociation kinetics for bacterial community DNA from pristine and met...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2005-08, Vol.309 (5739), p.1387-1390
Main Authors: Gans, Jason, Wolinsky, Murray, Dunbar, John
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The complexity of soil bacterial communities has thus far confounded effective measurement. However, with improved analytical methods, we show that the abundance distribution and total diversity can be deciphered. Reanalysis of reassociation kinetics for bacterial community DNA from pristine and metal-polluted soils showed that a power law best described the abundance distributions. More than one million distinct genomes occurred in the pristine soil, exceeding previous estimates by two orders of magnitude. Metal pollution reduced diversity more than 99.9%, revealing the highly toxic effect of metal contamination, especially for rare taxa.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.1112665