Loading…
Design of a compact photonic-crystal-based polarizing beam splitter
A compact polarizing beam splitter based on a photonic crystal (PC) directional coupler with a triangular lattice of air holes is designed and simulated. In the employed PC structure, transverse-electric (TE) light is confined with the photonic bandgap effect, while transverse-magnetic (TM) light is...
Saved in:
Published in: | IEEE photonics technology letters 2005-07, Vol.17 (7), p.1435-1437 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A compact polarizing beam splitter based on a photonic crystal (PC) directional coupler with a triangular lattice of air holes is designed and simulated. In the employed PC structure, transverse-electric (TE) light is confined with the photonic bandgap effect, while transverse-magnetic (TM) light is guided through an index-like effect. Due to the different guiding mechanisms, TM and TE light have strikingly different beat lengths, which is utilized to separate the two polarizations in a directional coupler no longer than 24.2 μm. The two-dimensional finite-difference time-domain method of computation is used to evaluate the device performance. The extinction ratios are found to be around 20 dB for both TE and TM polarized light. |
---|---|
ISSN: | 1041-1135 1941-0174 |
DOI: | 10.1109/LPT.2005.848278 |