Loading…
The photochemical formation of a titan haze analog. Structural analysis by x-ray photoelectron and infrared spectroscopy
The photochemical flow reactor (D.W. Clarke et al., 2000, Icarus 147, 282–291) has been modified to minimize the incorporation of oxygen and other impurities in the photoproducts. A mixture of gases that approximate their mixing ratios on Titan (N 2, CH 4, H 2, C 2H 2, C 2H 4, and HC 3N) (0.98, 0.01...
Saved in:
Published in: | Icarus (New York, N.Y. 1962) N.Y. 1962), 2003-03, Vol.162 (1), p.114-124 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c369t-f6a5e40b4a3fbcd0c1e4dacd52dbe6a85eae7bc24634af0d5801370218a795d13 |
---|---|
cites | |
container_end_page | 124 |
container_issue | 1 |
container_start_page | 114 |
container_title | Icarus (New York, N.Y. 1962) |
container_volume | 162 |
creator | Tran, Buu N. Ferris, James P. Chera, John J. |
description | The photochemical flow reactor
(D.W. Clarke et al., 2000, Icarus 147, 282–291) has been modified to minimize the incorporation of oxygen and other impurities in the photoproducts. A mixture of gases that approximate their mixing ratios on Titan (N
2, CH
4, H
2, C
2H
2, C
2H
4, and HC
3N) (0.98, 0.018, 0.002, 3.5 × 10
−4, 3 × 10
−4, 1.7 × 10
−5, respectively) was irradiated in the flow photochemical reactor using a 185-nm source to give a Titan haze analog as a solid product. X-ray photoelectron spectroscopy (XPS) gave a composition of 93.3% C, 5.3% N, and 1.4% O. Of the 93.3% carbon, high-resolution XPS revealed that 81.2% was present as CH, CC, and CC groups, 12.1% may be CO, CN, CN, CN, and/or CN groups, 5.3% as a CN group. The peak for N was symmetrical and was assigned to the CN while that for oxygen was assigned to the CO and/or the CO group. Some of these assignments were confirmed by FTIR spectroscopy. The polymeric product had a C:N ratio of 17.6, which is significantly greater than that for Titan haze analogs prepared in discharge reactions. When the polymer was exposed to air for seven days the oxygen content increased by 6% along with an increase in the infrared absorption at 1710 cm
−1 assigned to the CO group of a ketone. The oxidation is attributed to the reaction of oxygen with free radicals trapped in the polymer matrix. It is proposed that the photochemical initiation of Titan haze formation from compounds formed from starting materials formed high in Titan’s atmosphere is a more plausible model than haze formed in reactions initiated by solely by discharges. These data will be helpful in the interpretation of the data returned from the Huygens probe of the
Cassini mission. |
doi_str_mv | 10.1016/S0019-1035(02)00069-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28028203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019103502000696</els_id><sourcerecordid>18885962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-f6a5e40b4a3fbcd0c1e4dacd52dbe6a85eae7bc24634af0d5801370218a795d13</originalsourceid><addsrcrecordid>eNqFkUGLFDEQhYMoOK7-BCEn0UPvVpJOJn0SWVZdWPCw6zlUJ9VOpKfTJhnZ9tfbMyNe91Tw-N6DV4-xtwIuBQhzdQ8gukaA0u9BfgAA0zXmGdsI6KCRplXP2eY_8pK9KuXnCmnbqQ17fNgRn3epJr-jffQ48iHlPdaYJp4GjrzGihPf4R_iOOGYflzy-5oPvh7yCh-lpcTC-4U_NhmXcxiN5GteI3AKPE5DxkyBl_mkFp_m5TV7MeBY6M2_e8G-f755uP7a3H37cnv96a7xynS1GQxqaqFvUQ29D-AFtQF90DL0ZNBqQtr2XrZGtThA0BaE2oIUFredDkJdsHfn3DmnXwcq1e1j8TSOOFE6FCctSCtBPQkKa63ujFxBfQb9WqVkGtyc4x7z4gS44yDuNIg7ftuBdKdBnFl9H88-Wuv-jpRd8ZEmTyHm9S8upPhEwl-dwZVi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18885962</pqid></control><display><type>article</type><title>The photochemical formation of a titan haze analog. Structural analysis by x-ray photoelectron and infrared spectroscopy</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Tran, Buu N. ; Ferris, James P. ; Chera, John J.</creator><creatorcontrib>Tran, Buu N. ; Ferris, James P. ; Chera, John J.</creatorcontrib><description>The photochemical flow reactor
(D.W. Clarke et al., 2000, Icarus 147, 282–291) has been modified to minimize the incorporation of oxygen and other impurities in the photoproducts. A mixture of gases that approximate their mixing ratios on Titan (N
2, CH
4, H
2, C
2H
2, C
2H
4, and HC
3N) (0.98, 0.018, 0.002, 3.5 × 10
−4, 3 × 10
−4, 1.7 × 10
−5, respectively) was irradiated in the flow photochemical reactor using a 185-nm source to give a Titan haze analog as a solid product. X-ray photoelectron spectroscopy (XPS) gave a composition of 93.3% C, 5.3% N, and 1.4% O. Of the 93.3% carbon, high-resolution XPS revealed that 81.2% was present as CH, CC, and CC groups, 12.1% may be CO, CN, CN, CN, and/or CN groups, 5.3% as a CN group. The peak for N was symmetrical and was assigned to the CN while that for oxygen was assigned to the CO and/or the CO group. Some of these assignments were confirmed by FTIR spectroscopy. The polymeric product had a C:N ratio of 17.6, which is significantly greater than that for Titan haze analogs prepared in discharge reactions. When the polymer was exposed to air for seven days the oxygen content increased by 6% along with an increase in the infrared absorption at 1710 cm
−1 assigned to the CO group of a ketone. The oxidation is attributed to the reaction of oxygen with free radicals trapped in the polymer matrix. It is proposed that the photochemical initiation of Titan haze formation from compounds formed from starting materials formed high in Titan’s atmosphere is a more plausible model than haze formed in reactions initiated by solely by discharges. These data will be helpful in the interpretation of the data returned from the Huygens probe of the
Cassini mission.</description><identifier>ISSN: 0019-1035</identifier><identifier>EISSN: 1090-2643</identifier><identifier>DOI: 10.1016/S0019-1035(02)00069-6</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Atmospheres ; Evolution ; Huygens ; Photochemistry ; Titan haze</subject><ispartof>Icarus (New York, N.Y. 1962), 2003-03, Vol.162 (1), p.114-124</ispartof><rights>2003 Elsevier Science (USA)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-f6a5e40b4a3fbcd0c1e4dacd52dbe6a85eae7bc24634af0d5801370218a795d13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tran, Buu N.</creatorcontrib><creatorcontrib>Ferris, James P.</creatorcontrib><creatorcontrib>Chera, John J.</creatorcontrib><title>The photochemical formation of a titan haze analog. Structural analysis by x-ray photoelectron and infrared spectroscopy</title><title>Icarus (New York, N.Y. 1962)</title><description>The photochemical flow reactor
(D.W. Clarke et al., 2000, Icarus 147, 282–291) has been modified to minimize the incorporation of oxygen and other impurities in the photoproducts. A mixture of gases that approximate their mixing ratios on Titan (N
2, CH
4, H
2, C
2H
2, C
2H
4, and HC
3N) (0.98, 0.018, 0.002, 3.5 × 10
−4, 3 × 10
−4, 1.7 × 10
−5, respectively) was irradiated in the flow photochemical reactor using a 185-nm source to give a Titan haze analog as a solid product. X-ray photoelectron spectroscopy (XPS) gave a composition of 93.3% C, 5.3% N, and 1.4% O. Of the 93.3% carbon, high-resolution XPS revealed that 81.2% was present as CH, CC, and CC groups, 12.1% may be CO, CN, CN, CN, and/or CN groups, 5.3% as a CN group. The peak for N was symmetrical and was assigned to the CN while that for oxygen was assigned to the CO and/or the CO group. Some of these assignments were confirmed by FTIR spectroscopy. The polymeric product had a C:N ratio of 17.6, which is significantly greater than that for Titan haze analogs prepared in discharge reactions. When the polymer was exposed to air for seven days the oxygen content increased by 6% along with an increase in the infrared absorption at 1710 cm
−1 assigned to the CO group of a ketone. The oxidation is attributed to the reaction of oxygen with free radicals trapped in the polymer matrix. It is proposed that the photochemical initiation of Titan haze formation from compounds formed from starting materials formed high in Titan’s atmosphere is a more plausible model than haze formed in reactions initiated by solely by discharges. These data will be helpful in the interpretation of the data returned from the Huygens probe of the
Cassini mission.</description><subject>Atmospheres</subject><subject>Evolution</subject><subject>Huygens</subject><subject>Photochemistry</subject><subject>Titan haze</subject><issn>0019-1035</issn><issn>1090-2643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkUGLFDEQhYMoOK7-BCEn0UPvVpJOJn0SWVZdWPCw6zlUJ9VOpKfTJhnZ9tfbMyNe91Tw-N6DV4-xtwIuBQhzdQ8gukaA0u9BfgAA0zXmGdsI6KCRplXP2eY_8pK9KuXnCmnbqQ17fNgRn3epJr-jffQ48iHlPdaYJp4GjrzGihPf4R_iOOGYflzy-5oPvh7yCh-lpcTC-4U_NhmXcxiN5GteI3AKPE5DxkyBl_mkFp_m5TV7MeBY6M2_e8G-f755uP7a3H37cnv96a7xynS1GQxqaqFvUQ29D-AFtQF90DL0ZNBqQtr2XrZGtThA0BaE2oIUFredDkJdsHfn3DmnXwcq1e1j8TSOOFE6FCctSCtBPQkKa63ujFxBfQb9WqVkGtyc4x7z4gS44yDuNIg7ftuBdKdBnFl9H88-Wuv-jpRd8ZEmTyHm9S8upPhEwl-dwZVi</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>Tran, Buu N.</creator><creator>Ferris, James P.</creator><creator>Chera, John J.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20030301</creationdate><title>The photochemical formation of a titan haze analog. Structural analysis by x-ray photoelectron and infrared spectroscopy</title><author>Tran, Buu N. ; Ferris, James P. ; Chera, John J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-f6a5e40b4a3fbcd0c1e4dacd52dbe6a85eae7bc24634af0d5801370218a795d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Atmospheres</topic><topic>Evolution</topic><topic>Huygens</topic><topic>Photochemistry</topic><topic>Titan haze</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Buu N.</creatorcontrib><creatorcontrib>Ferris, James P.</creatorcontrib><creatorcontrib>Chera, John J.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Icarus (New York, N.Y. 1962)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Buu N.</au><au>Ferris, James P.</au><au>Chera, John J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The photochemical formation of a titan haze analog. Structural analysis by x-ray photoelectron and infrared spectroscopy</atitle><jtitle>Icarus (New York, N.Y. 1962)</jtitle><date>2003-03-01</date><risdate>2003</risdate><volume>162</volume><issue>1</issue><spage>114</spage><epage>124</epage><pages>114-124</pages><issn>0019-1035</issn><eissn>1090-2643</eissn><abstract>The photochemical flow reactor
(D.W. Clarke et al., 2000, Icarus 147, 282–291) has been modified to minimize the incorporation of oxygen and other impurities in the photoproducts. A mixture of gases that approximate their mixing ratios on Titan (N
2, CH
4, H
2, C
2H
2, C
2H
4, and HC
3N) (0.98, 0.018, 0.002, 3.5 × 10
−4, 3 × 10
−4, 1.7 × 10
−5, respectively) was irradiated in the flow photochemical reactor using a 185-nm source to give a Titan haze analog as a solid product. X-ray photoelectron spectroscopy (XPS) gave a composition of 93.3% C, 5.3% N, and 1.4% O. Of the 93.3% carbon, high-resolution XPS revealed that 81.2% was present as CH, CC, and CC groups, 12.1% may be CO, CN, CN, CN, and/or CN groups, 5.3% as a CN group. The peak for N was symmetrical and was assigned to the CN while that for oxygen was assigned to the CO and/or the CO group. Some of these assignments were confirmed by FTIR spectroscopy. The polymeric product had a C:N ratio of 17.6, which is significantly greater than that for Titan haze analogs prepared in discharge reactions. When the polymer was exposed to air for seven days the oxygen content increased by 6% along with an increase in the infrared absorption at 1710 cm
−1 assigned to the CO group of a ketone. The oxidation is attributed to the reaction of oxygen with free radicals trapped in the polymer matrix. It is proposed that the photochemical initiation of Titan haze formation from compounds formed from starting materials formed high in Titan’s atmosphere is a more plausible model than haze formed in reactions initiated by solely by discharges. These data will be helpful in the interpretation of the data returned from the Huygens probe of the
Cassini mission.</abstract><pub>Elsevier Inc</pub><doi>10.1016/S0019-1035(02)00069-6</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0019-1035 |
ispartof | Icarus (New York, N.Y. 1962), 2003-03, Vol.162 (1), p.114-124 |
issn | 0019-1035 1090-2643 |
language | eng |
recordid | cdi_proquest_miscellaneous_28028203 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Atmospheres Evolution Huygens Photochemistry Titan haze |
title | The photochemical formation of a titan haze analog. Structural analysis by x-ray photoelectron and infrared spectroscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20photochemical%20formation%20of%20a%20titan%20haze%20analog.%20Structural%20analysis%20by%20x-ray%20photoelectron%20and%20infrared%20spectroscopy&rft.jtitle=Icarus%20(New%20York,%20N.Y.%201962)&rft.au=Tran,%20Buu%20N.&rft.date=2003-03-01&rft.volume=162&rft.issue=1&rft.spage=114&rft.epage=124&rft.pages=114-124&rft.issn=0019-1035&rft.eissn=1090-2643&rft_id=info:doi/10.1016/S0019-1035(02)00069-6&rft_dat=%3Cproquest_cross%3E18885962%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-f6a5e40b4a3fbcd0c1e4dacd52dbe6a85eae7bc24634af0d5801370218a795d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=18885962&rft_id=info:pmid/&rfr_iscdi=true |