Loading…
Three-Dimensional Nonlinear Finite Element Model for Simulating Pavement Response: Study at Canterbury Accelerated Pavement Testing Indoor Facility, New Zealand
A three-dimensional nonlinear finite element model (3D-FEM) was developed as part of a study of the effect of increasing axle load and tire pressure on pavement deterioration. The measured strains, interface stresses, and deflections were collected from the instrumented Canterbury Accelerated Paveme...
Saved in:
Published in: | Transportation research record 2003, Vol.1823 (1), p.153-162 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A three-dimensional nonlinear finite element model (3D-FEM) was developed as part of a study of the effect of increasing axle load and tire pressure on pavement deterioration. The measured strains, interface stresses, and deflections were collected from the instrumented Canterbury Accelerated Pavement Testing Indoor Facility in New Zealand. In addition, two multilayer elastic models were used to compare the values from the finite element simulation and the actual measurements. The first elastic multilayer model was developed with ELSYM5 software, and the second model was developed with CIRCLY software. CIRCLY differs from ELSYM5 in the ability to account for material anisotropy; ELSYM5 considers the pavement materials to be isotropic. The actual strains and deformations were measured by Emu strain gauges embedded at different depths in the base and subgrade materials. Both the unbound granular base and the subgrade materials were modeled in 3D-FEM as elastic plastic materials. The results showed that for the unbound base layer, the strains calculated from the two elastic models were in reasonable agreement with the values measured in the instrumented test track, while the 3D-FEM model tended to overestimate the strains at the bottom of the base. While none of the models provided a perfect fit to the measured strains in the subgrade layer because the subgrade is less homogenous than assumed, 3D-FEM provided the closest fit. Also, CIRCLY provided better results than ELSYM5, which underestimated the displacement values compared with values obtained with CIRCLY and 3D-FEM. |
---|---|
ISSN: | 0361-1981 2169-4052 |
DOI: | 10.3141/1823-17 |