Loading…

Temperature dependence of effective thermal conductivity and thermal diffusivity of treated and untreated polymer composites

Thermal properties, such as thermal conductivity, thermal diffusivity, and specific heat, of treated and untreated oil palm fiber–reinforced PF composites were measured simultaneously at room temperature and normal pressure using the transient plane source (TPS) technique. An increase in thermal con...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2003-08, Vol.89 (6), p.1708-1714
Main Authors: Agarwal, Rajni, Saxena, N. S., Sharma, Kanan Bala, Thomas, S., Sreekala, M. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thermal properties, such as thermal conductivity, thermal diffusivity, and specific heat, of treated and untreated oil palm fiber–reinforced PF composites were measured simultaneously at room temperature and normal pressure using the transient plane source (TPS) technique. An increase in thermal conductivity was observed in the fiber‐treated and resin‐treated composites. Surface modifications of fibers by prealkali, potassium permanganate, and peroxide treatments increased the fiber–matrix adhesion by increasing porosity and pore size of the fiber surfaces. The increase in crosslinking enhanced the thermal conductivity of a composite of resin treated with peroxide compared to other composites. Also an attempt was made to explain the temperature dependence of thermal conductivity and thermal diffusivity of amorphous polymer samples using the same technique. It was observed that at the glass‐transition peak of the polymer, thermal conductivity and diffusivity were maximum. Below and above this temperature their values decreased. This has been explained on the basis of predominant scattering processes. An empirical relationship was established for the theoretical prediction of thermal conductivity and diffusivity. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1708–1714, 2003
ISSN:0021-8995
1097-4628
DOI:10.1002/app.12276