Loading…
An efficient detector for combined space-time coding and layered processing
Group layered space-time architecture (GLST) combines space-time block coding and layered space-time processing, where the transmit stream is partitioned into different groups, and in each group, space-time block coding is applied. In the traditional receiver of GLST, group detection is applied firs...
Saved in:
Published in: | IEEE transactions on communications 2005-09, Vol.53 (9), p.1438-1442 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Group layered space-time architecture (GLST) combines space-time block coding and layered space-time processing, where the transmit stream is partitioned into different groups, and in each group, space-time block coding is applied. In the traditional receiver of GLST, group detection is applied first to suppress the interference from other groups, and then decoding is performed for the desired group. In this letter, a novel detector is proposed in which the entire groups are decoded first, and then group detection is performed next. Theoretical analysis will demonstrate that the new detector can achieve a significant capacity gain compared with the traditional one. Simulation results will further show that the proposed detector can obtain at least 4 dB gain at a frame-error rate of 10/sup -2/, for instance. |
---|---|
ISSN: | 0090-6778 1558-0857 |
DOI: | 10.1109/TCOMM.2005.855016 |