Loading…
Predicting the spatiotemporal chlorophyll-a distribution in the Sea of Japan based on SeaWiFS ocean color satellite data
We developed a new statistical spatiotemporal model for chlorophyll-a (chl-a) distribution over the Sea of Japan, derived from the satellite-based Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Because preliminary analysis showed that the SeaWiFS data exhibit anisotropy in space and autocorrelatio...
Saved in:
Published in: | IEEE geoscience and remote sensing letters 2006-04, Vol.3 (2), p.212-216 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We developed a new statistical spatiotemporal model for chlorophyll-a (chl-a) distribution over the Sea of Japan, derived from the satellite-based Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Because preliminary analysis showed that the SeaWiFS data exhibit anisotropy in space and autocorrelation in time, we propose a new spatiotemporal model for chl-a distribution and its predictor. Numerical prediction experiments applying the SeaWiFS data showed that the predictor could forecast chl-a distributions in summer and early fall well, although further changes in the model structure will be necessary to predict aspects of the spring and late fall blooms. |
---|---|
ISSN: | 1545-598X 1558-0571 |
DOI: | 10.1109/LGRS.2005.861931 |