Loading…
Synthesis of Urchin-like Ni@NP@NCP Composites with Three Solvothermal Systems for Highly Efficient Overall Seawater Splitting
In this work, an urchin-like Ni@Ni2P@NiCoP (Ni@NP@NCP) composite was prepared on nickel foam by a simple hydrothermal treatment process. Using the prepared NiO nanosheets as templates, the NiCo precursor was prepared in the presence of three solvothermal systems of water/dimethylformamide (DMF)/dime...
Saved in:
Published in: | Langmuir 2023-05, Vol.39 (17), p.6240-6248 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, an urchin-like Ni@Ni2P@NiCoP (Ni@NP@NCP) composite was prepared on nickel foam by a simple hydrothermal treatment process. Using the prepared NiO nanosheets as templates, the NiCo precursor was prepared in the presence of three solvothermal systems of water/dimethylformamide (DMF)/dimethyl sulfoxide (DMSO) by the hydrothermal process. After mixing and calcining with sodium hypophosphite under a nitrogen atmosphere at a high temperature for phosphating, an urchin-like Ni@NP@NCP(F/SO/H) nanostructured catalyst was obtained with superior hydrogen evolution and oxygen evolution performance. To further explore their efficiency in seawater splitting. Ni@NP@NCP(F/SO/H) composites were used as the cathode and anode of an electrolytic cell, which delivered 1.822 V potential at 300 mA cm–2 in simulated seawater (1 M KOH and 0.5 M NaCl). This may provide an effective way of developing clean energy. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/acs.langmuir.3c00504 |