Loading…

Presentation of Human Neural Stem Cell Antigens Drives Regulatory T Cell Induction

Transplantation of human neural stem cells (hNSCs) is a promising regenerative therapy to promote remyelination in patients with multiple sclerosis (MS). Transplantation of hNSCs has been shown to increase the number of CD4+CD25+Foxp3+ T regulatory cells (Tregs) in the spinal cords of murine models...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of immunology (1950) 2023-06, Vol.210 (11), p.1677-1686
Main Authors: Greilach, Scott A, McIntyre, Laura L, Nguyen, Quy H, Silva, Jorge, Kessenbrock, Kai, Lane, Thomas E, Walsh, Craig M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Transplantation of human neural stem cells (hNSCs) is a promising regenerative therapy to promote remyelination in patients with multiple sclerosis (MS). Transplantation of hNSCs has been shown to increase the number of CD4+CD25+Foxp3+ T regulatory cells (Tregs) in the spinal cords of murine models of MS, which is correlated with a strong localized remyelination response. However, the mechanisms by which hNSC transplantation leads to an increase in Tregs in the CNS remains unclear. We report that hNSCs drive the conversion of T conventional (Tconv) cells into Tregs in vitro. Conversion of Tconv cells is Ag driven and fails to occur in the absence of TCR stimulation by cognate antigenic self-peptides. Furthermore, CNS Ags are sufficient to drive this conversion in the absence of hNSCs in vitro and in vivo. Importantly, only Ags presented in the thymus during T cell selection drive this Treg response. In this study, we investigate the mechanisms by which hNSC Ags drive the conversion of Tconv cells into Tregs and may provide key insight needed for the development of MS therapies.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.2200798