Loading…
Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell
The Quantum Dot Intermediate Band Solar Cell (QD-IBSC) has been proposed for studying experimentally the operating principles of a generic class of photovoltaic devices, the intermediate band solar cells (IBSC). The performance of an IBSC is based on the properties of a semiconductor-like material w...
Saved in:
Published in: | Thin solid films 2006-07, Vol.511 (Complete), p.638-644 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Quantum Dot Intermediate Band Solar Cell (QD-IBSC) has been proposed for studying experimentally the operating principles of a generic class of photovoltaic devices, the intermediate band solar cells (IBSC). The performance of an IBSC is based on the properties of a semiconductor-like material which is characterised by the existence of an intermediate band (IB) located within what would otherwise be its conventional bandgap. The improvement in efficiency of the cell arises from its potential (i) to absorb below bandgap energy photons and thus produce additional photocurrent, and (ii) to inject this enhanced photocurrent without degrading its output photo-voltage. The implementation of the IBSC using quantum dots (QDs) takes advantage of the discrete nature of the carrier density of states in a 0-dimensional nano-structure, an essential property for realising the IB concept. In the QD-IBSC, the IB arises from the confined electron states in an array of quantum dots. This paper reviews the operation of the first prototype QD-IBSCs and discusses some of the lessons learnt from their characterisation. |
---|---|
ISSN: | 0040-6090 1879-2731 |
DOI: | 10.1016/j.tsf.2005.12.122 |