Loading…

Voltage Modulation of Nanoplasmonic Metal Luminescence from Nano-Optoelectrodes in Electrolytes

Metallic nanostructures supporting surface plasmon modes can concentrate optical fields and enhance luminescence processes from the metal surface at plasmonic hotspots. Such nanoplasmonic metal luminescence contributes to the spectral background in surface-enhanced Raman spectroscopy (SERS) measurem...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2023-05, Vol.17 (9), p.8634-8645
Main Authors: Zhao, Yuming, Xiao, Chuan, Mejia, Elieser, Garg, Aditya, Song, Junyeob, Agrawal, Amit, Zhou, Wei
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a287t-ccfd1495f450ae636fe42380d67b0ea42c8e8da0d7cd97c31e78b3fb8c907d963
container_end_page 8645
container_issue 9
container_start_page 8634
container_title ACS nano
container_volume 17
creator Zhao, Yuming
Xiao, Chuan
Mejia, Elieser
Garg, Aditya
Song, Junyeob
Agrawal, Amit
Zhou, Wei
description Metallic nanostructures supporting surface plasmon modes can concentrate optical fields and enhance luminescence processes from the metal surface at plasmonic hotspots. Such nanoplasmonic metal luminescence contributes to the spectral background in surface-enhanced Raman spectroscopy (SERS) measurements and is helpful in bioimaging, nanothermometry and chemical reaction monitoring applications. Although there is growing interest in nanoplasmonic metal luminescence, its dependence on voltage modulation has received limited attention in research investigations. Also, the hyphenated electrochemical surface-enhanced Raman spectroscopy (EC-SERS) technique typically ignores voltage-dependent spectral background information associated with nanoplasmonic metal luminescence due to limited mechanistic understanding and poor measurement reproducibility. Here, we report a combined experiment and theory study on dynamic voltage-modulated nanoplasmonic metal luminescence from hotspots at the electrode–electrolyte interface using multiresonant nanolaminate nano-optoelectrode arrays. Our EC-SERS measurements under 785 nm continuous wavelength laser excitation demonstrate that short-wavenumber nanoplasmonic metal luminescence associated with plasmon-enhanced electronic Raman scattering (PE-ERS) exhibits a negative voltage modulation slope (up to ≈30% V–1) in physiological ionic solutions. Furthermore, we have developed a phenomenological model to intuitively capture the plasmonic, electronic, and ionic characteristics at the metal–electrolyte interface to understand the observed dependence of the PE-ERS voltage modulation slope on voltage polarization and ionic strength. The current work represents a critical step toward the general application of nanoplasmonic metal luminescence signals in optical voltage biosensing, hybrid optical-electrical signal transduction, and interfacial electrochemical monitoring.
doi_str_mv 10.1021/acsnano.3c01491
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2805517990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2805517990</sourcerecordid><originalsourceid>FETCH-LOGICAL-a287t-ccfd1495f450ae636fe42380d67b0ea42c8e8da0d7cd97c31e78b3fb8c907d963</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EoqUws6GMSCitHSexM6KqfEgtXQCxWY59Qakcu8TO0P-eQEI3pruTfu_p3kPomuA5wQlZSOWttG5OFSZpQU7QlBQ0jzHPP06Pe0Ym6ML7HcYZ4yw_RxPKcEGzPJki8e5MkJ8QbZzujAy1s5GropfedG-kb5ytVbSBIE207pragldgFURV65pfKt7ugwMDKrROg49qG62GyxwC-Et0Vknj4WqcM_T2sHpdPsXr7ePz8n4dy4SzECtV6T5AVqUZlpDTvII0oRzrnJUYZJooDlxLrJnSBVOUAOMlrUquCsx0kdMZuh1896376sAH0dT9q8ZIC67zIuE4ywgrCtyjiwFVrfO-hUrs27qR7UEQLH5aFWOrYmy1V9yM5l3ZgD7yfzX2wN0A9Eqxc11r-6z_2n0D0PqFCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805517990</pqid></control><display><type>article</type><title>Voltage Modulation of Nanoplasmonic Metal Luminescence from Nano-Optoelectrodes in Electrolytes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Zhao, Yuming ; Xiao, Chuan ; Mejia, Elieser ; Garg, Aditya ; Song, Junyeob ; Agrawal, Amit ; Zhou, Wei</creator><creatorcontrib>Zhao, Yuming ; Xiao, Chuan ; Mejia, Elieser ; Garg, Aditya ; Song, Junyeob ; Agrawal, Amit ; Zhou, Wei</creatorcontrib><description>Metallic nanostructures supporting surface plasmon modes can concentrate optical fields and enhance luminescence processes from the metal surface at plasmonic hotspots. Such nanoplasmonic metal luminescence contributes to the spectral background in surface-enhanced Raman spectroscopy (SERS) measurements and is helpful in bioimaging, nanothermometry and chemical reaction monitoring applications. Although there is growing interest in nanoplasmonic metal luminescence, its dependence on voltage modulation has received limited attention in research investigations. Also, the hyphenated electrochemical surface-enhanced Raman spectroscopy (EC-SERS) technique typically ignores voltage-dependent spectral background information associated with nanoplasmonic metal luminescence due to limited mechanistic understanding and poor measurement reproducibility. Here, we report a combined experiment and theory study on dynamic voltage-modulated nanoplasmonic metal luminescence from hotspots at the electrode–electrolyte interface using multiresonant nanolaminate nano-optoelectrode arrays. Our EC-SERS measurements under 785 nm continuous wavelength laser excitation demonstrate that short-wavenumber nanoplasmonic metal luminescence associated with plasmon-enhanced electronic Raman scattering (PE-ERS) exhibits a negative voltage modulation slope (up to ≈30% V–1) in physiological ionic solutions. Furthermore, we have developed a phenomenological model to intuitively capture the plasmonic, electronic, and ionic characteristics at the metal–electrolyte interface to understand the observed dependence of the PE-ERS voltage modulation slope on voltage polarization and ionic strength. The current work represents a critical step toward the general application of nanoplasmonic metal luminescence signals in optical voltage biosensing, hybrid optical-electrical signal transduction, and interfacial electrochemical monitoring.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.3c01491</identifier><identifier>PMID: 37093562</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2023-05, Vol.17 (9), p.8634-8645</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a287t-ccfd1495f450ae636fe42380d67b0ea42c8e8da0d7cd97c31e78b3fb8c907d963</cites><orcidid>0000-0002-9619-7623 ; 0000-0002-5257-3885</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37093562$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Yuming</creatorcontrib><creatorcontrib>Xiao, Chuan</creatorcontrib><creatorcontrib>Mejia, Elieser</creatorcontrib><creatorcontrib>Garg, Aditya</creatorcontrib><creatorcontrib>Song, Junyeob</creatorcontrib><creatorcontrib>Agrawal, Amit</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><title>Voltage Modulation of Nanoplasmonic Metal Luminescence from Nano-Optoelectrodes in Electrolytes</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Metallic nanostructures supporting surface plasmon modes can concentrate optical fields and enhance luminescence processes from the metal surface at plasmonic hotspots. Such nanoplasmonic metal luminescence contributes to the spectral background in surface-enhanced Raman spectroscopy (SERS) measurements and is helpful in bioimaging, nanothermometry and chemical reaction monitoring applications. Although there is growing interest in nanoplasmonic metal luminescence, its dependence on voltage modulation has received limited attention in research investigations. Also, the hyphenated electrochemical surface-enhanced Raman spectroscopy (EC-SERS) technique typically ignores voltage-dependent spectral background information associated with nanoplasmonic metal luminescence due to limited mechanistic understanding and poor measurement reproducibility. Here, we report a combined experiment and theory study on dynamic voltage-modulated nanoplasmonic metal luminescence from hotspots at the electrode–electrolyte interface using multiresonant nanolaminate nano-optoelectrode arrays. Our EC-SERS measurements under 785 nm continuous wavelength laser excitation demonstrate that short-wavenumber nanoplasmonic metal luminescence associated with plasmon-enhanced electronic Raman scattering (PE-ERS) exhibits a negative voltage modulation slope (up to ≈30% V–1) in physiological ionic solutions. Furthermore, we have developed a phenomenological model to intuitively capture the plasmonic, electronic, and ionic characteristics at the metal–electrolyte interface to understand the observed dependence of the PE-ERS voltage modulation slope on voltage polarization and ionic strength. The current work represents a critical step toward the general application of nanoplasmonic metal luminescence signals in optical voltage biosensing, hybrid optical-electrical signal transduction, and interfacial electrochemical monitoring.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EoqUws6GMSCitHSexM6KqfEgtXQCxWY59Qakcu8TO0P-eQEI3pruTfu_p3kPomuA5wQlZSOWttG5OFSZpQU7QlBQ0jzHPP06Pe0Ym6ML7HcYZ4yw_RxPKcEGzPJki8e5MkJ8QbZzujAy1s5GropfedG-kb5ytVbSBIE207pragldgFURV65pfKt7ugwMDKrROg49qG62GyxwC-Et0Vknj4WqcM_T2sHpdPsXr7ePz8n4dy4SzECtV6T5AVqUZlpDTvII0oRzrnJUYZJooDlxLrJnSBVOUAOMlrUquCsx0kdMZuh1896376sAH0dT9q8ZIC67zIuE4ywgrCtyjiwFVrfO-hUrs27qR7UEQLH5aFWOrYmy1V9yM5l3ZgD7yfzX2wN0A9Eqxc11r-6z_2n0D0PqFCQ</recordid><startdate>20230509</startdate><enddate>20230509</enddate><creator>Zhao, Yuming</creator><creator>Xiao, Chuan</creator><creator>Mejia, Elieser</creator><creator>Garg, Aditya</creator><creator>Song, Junyeob</creator><creator>Agrawal, Amit</creator><creator>Zhou, Wei</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9619-7623</orcidid><orcidid>https://orcid.org/0000-0002-5257-3885</orcidid></search><sort><creationdate>20230509</creationdate><title>Voltage Modulation of Nanoplasmonic Metal Luminescence from Nano-Optoelectrodes in Electrolytes</title><author>Zhao, Yuming ; Xiao, Chuan ; Mejia, Elieser ; Garg, Aditya ; Song, Junyeob ; Agrawal, Amit ; Zhou, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a287t-ccfd1495f450ae636fe42380d67b0ea42c8e8da0d7cd97c31e78b3fb8c907d963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yuming</creatorcontrib><creatorcontrib>Xiao, Chuan</creatorcontrib><creatorcontrib>Mejia, Elieser</creatorcontrib><creatorcontrib>Garg, Aditya</creatorcontrib><creatorcontrib>Song, Junyeob</creatorcontrib><creatorcontrib>Agrawal, Amit</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yuming</au><au>Xiao, Chuan</au><au>Mejia, Elieser</au><au>Garg, Aditya</au><au>Song, Junyeob</au><au>Agrawal, Amit</au><au>Zhou, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voltage Modulation of Nanoplasmonic Metal Luminescence from Nano-Optoelectrodes in Electrolytes</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2023-05-09</date><risdate>2023</risdate><volume>17</volume><issue>9</issue><spage>8634</spage><epage>8645</epage><pages>8634-8645</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Metallic nanostructures supporting surface plasmon modes can concentrate optical fields and enhance luminescence processes from the metal surface at plasmonic hotspots. Such nanoplasmonic metal luminescence contributes to the spectral background in surface-enhanced Raman spectroscopy (SERS) measurements and is helpful in bioimaging, nanothermometry and chemical reaction monitoring applications. Although there is growing interest in nanoplasmonic metal luminescence, its dependence on voltage modulation has received limited attention in research investigations. Also, the hyphenated electrochemical surface-enhanced Raman spectroscopy (EC-SERS) technique typically ignores voltage-dependent spectral background information associated with nanoplasmonic metal luminescence due to limited mechanistic understanding and poor measurement reproducibility. Here, we report a combined experiment and theory study on dynamic voltage-modulated nanoplasmonic metal luminescence from hotspots at the electrode–electrolyte interface using multiresonant nanolaminate nano-optoelectrode arrays. Our EC-SERS measurements under 785 nm continuous wavelength laser excitation demonstrate that short-wavenumber nanoplasmonic metal luminescence associated with plasmon-enhanced electronic Raman scattering (PE-ERS) exhibits a negative voltage modulation slope (up to ≈30% V–1) in physiological ionic solutions. Furthermore, we have developed a phenomenological model to intuitively capture the plasmonic, electronic, and ionic characteristics at the metal–electrolyte interface to understand the observed dependence of the PE-ERS voltage modulation slope on voltage polarization and ionic strength. The current work represents a critical step toward the general application of nanoplasmonic metal luminescence signals in optical voltage biosensing, hybrid optical-electrical signal transduction, and interfacial electrochemical monitoring.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37093562</pmid><doi>10.1021/acsnano.3c01491</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9619-7623</orcidid><orcidid>https://orcid.org/0000-0002-5257-3885</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2023-05, Vol.17 (9), p.8634-8645
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2805517990
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Voltage Modulation of Nanoplasmonic Metal Luminescence from Nano-Optoelectrodes in Electrolytes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T04%3A49%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voltage%20Modulation%20of%20Nanoplasmonic%20Metal%20Luminescence%20from%20Nano-Optoelectrodes%20in%20Electrolytes&rft.jtitle=ACS%20nano&rft.au=Zhao,%20Yuming&rft.date=2023-05-09&rft.volume=17&rft.issue=9&rft.spage=8634&rft.epage=8645&rft.pages=8634-8645&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.3c01491&rft_dat=%3Cproquest_cross%3E2805517990%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a287t-ccfd1495f450ae636fe42380d67b0ea42c8e8da0d7cd97c31e78b3fb8c907d963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2805517990&rft_id=info:pmid/37093562&rfr_iscdi=true