Loading…

Temperature dependence of the transient and AC electrical conductivity of porous silicon thin films

In order to investigate the prevailing conduction mechanisms of porous silicon (PS) thin films AC impedance spectroscopy measurements, as well as transient current measurements, as a function of voltage, were performed in the temperature range from 170 to 350 K. The frequency span was 1 Hz up to 1 M...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. B, Solid-state materials for advanced technology Solid-state materials for advanced technology, 2003-08, Vol.101 (1), p.334-337
Main Authors: Theodoropoulou, M., Krontiras, C.A., Xanthopoulos, N., Georga, S.N., Pisanias, M.N., Tsamis, C., Nassiopoulou, A.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-3711c6132f8d1584245b522978a048a7d493744aa9f39ab735a2186c3de38b6d3
cites cdi_FETCH-LOGICAL-c338t-3711c6132f8d1584245b522978a048a7d493744aa9f39ab735a2186c3de38b6d3
container_end_page 337
container_issue 1
container_start_page 334
container_title Materials science & engineering. B, Solid-state materials for advanced technology
container_volume 101
creator Theodoropoulou, M.
Krontiras, C.A.
Xanthopoulos, N.
Georga, S.N.
Pisanias, M.N.
Tsamis, C.
Nassiopoulou, A.G.
description In order to investigate the prevailing conduction mechanisms of porous silicon (PS) thin films AC impedance spectroscopy measurements, as well as transient current measurements, as a function of voltage, were performed in the temperature range from 170 to 350 K. The frequency span was 1 Hz up to 1 MHz and the time range 5×10 −5–10 s. The analysis of the experimental results involved correlation between AC and transient conductivity. The AC and transient conductivity measurements obey the Power Law of Dielectric Universal Response. The analysis shows that, within the range of the frequency span and time range of the measurements, the electrical conductivity is governed by three conduction mechanisms: In the low temperature region, specifically from 170 to 230 K, tunneling is the prevailing conduction mechanism. In the temperature range from 230 to 350 K two more thermally activated mechanisms contribute to the conductivity of PS thin films. The Ohmic conduction mechanism follows tunneling and precedes the Poole–Frenkel conduction mechanism. The time interval within each of these mechanisms is the prevailing one depends on temperature and applied voltage. The activation energy of Ohmic conduction as well as the exponential factor of Poole–Frenkel mechanism have been calculated.
doi_str_mv 10.1016/S0921-5107(02)00753-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28064386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921510702007535</els_id><sourcerecordid>28064386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-3711c6132f8d1584245b522978a048a7d493744aa9f39ab735a2186c3de38b6d3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BCEn0UM1n216kmXxCxY8uJ5DNplipJvWJF3w39vuildPc5jnfZl5ELqk5JYSWt69kZrRQlJSXRN2Q0gleSGP0IyqiheiFuIYzf6QU3SW0ichhDLGZsiuYdtDNHmIgB30EBwEC7hrcP4AnKMJyUPI2ASHF0sMLdgcvTUttl1wg81-5_P3xPdd7IaEk2_9uBrjPuDGt9t0jk4a0ya4-J1z9P74sF4-F6vXp5flYlVYzlUueEWpLSlnjXJUKsGE3EjG6koZIpSpnKh5JYQxdcNrs6m4NIyq0nIHXG1Kx-fo6tDbx-5rgJT11icLbWsCjJdppkgpuCpHUB5AG7uUIjS6j35r4remRE9K9V6pnnxpwvReqZZj7v6Qg_GLnYeok_WTLufjqEW7zv_T8AOjvX4M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28064386</pqid></control><display><type>article</type><title>Temperature dependence of the transient and AC electrical conductivity of porous silicon thin films</title><source>ScienceDirect Freedom Collection</source><creator>Theodoropoulou, M. ; Krontiras, C.A. ; Xanthopoulos, N. ; Georga, S.N. ; Pisanias, M.N. ; Tsamis, C. ; Nassiopoulou, A.G.</creator><creatorcontrib>Theodoropoulou, M. ; Krontiras, C.A. ; Xanthopoulos, N. ; Georga, S.N. ; Pisanias, M.N. ; Tsamis, C. ; Nassiopoulou, A.G.</creatorcontrib><description>In order to investigate the prevailing conduction mechanisms of porous silicon (PS) thin films AC impedance spectroscopy measurements, as well as transient current measurements, as a function of voltage, were performed in the temperature range from 170 to 350 K. The frequency span was 1 Hz up to 1 MHz and the time range 5×10 −5–10 s. The analysis of the experimental results involved correlation between AC and transient conductivity. The AC and transient conductivity measurements obey the Power Law of Dielectric Universal Response. The analysis shows that, within the range of the frequency span and time range of the measurements, the electrical conductivity is governed by three conduction mechanisms: In the low temperature region, specifically from 170 to 230 K, tunneling is the prevailing conduction mechanism. In the temperature range from 230 to 350 K two more thermally activated mechanisms contribute to the conductivity of PS thin films. The Ohmic conduction mechanism follows tunneling and precedes the Poole–Frenkel conduction mechanism. The time interval within each of these mechanisms is the prevailing one depends on temperature and applied voltage. The activation energy of Ohmic conduction as well as the exponential factor of Poole–Frenkel mechanism have been calculated.</description><identifier>ISSN: 0921-5107</identifier><identifier>EISSN: 1873-4944</identifier><identifier>DOI: 10.1016/S0921-5107(02)00753-5</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Electrical conductivity ; Ohmic ; Poole–Frenkel ; Porous silicon ; Tunneling</subject><ispartof>Materials science &amp; engineering. B, Solid-state materials for advanced technology, 2003-08, Vol.101 (1), p.334-337</ispartof><rights>2003 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-3711c6132f8d1584245b522978a048a7d493744aa9f39ab735a2186c3de38b6d3</citedby><cites>FETCH-LOGICAL-c338t-3711c6132f8d1584245b522978a048a7d493744aa9f39ab735a2186c3de38b6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Theodoropoulou, M.</creatorcontrib><creatorcontrib>Krontiras, C.A.</creatorcontrib><creatorcontrib>Xanthopoulos, N.</creatorcontrib><creatorcontrib>Georga, S.N.</creatorcontrib><creatorcontrib>Pisanias, M.N.</creatorcontrib><creatorcontrib>Tsamis, C.</creatorcontrib><creatorcontrib>Nassiopoulou, A.G.</creatorcontrib><title>Temperature dependence of the transient and AC electrical conductivity of porous silicon thin films</title><title>Materials science &amp; engineering. B, Solid-state materials for advanced technology</title><description>In order to investigate the prevailing conduction mechanisms of porous silicon (PS) thin films AC impedance spectroscopy measurements, as well as transient current measurements, as a function of voltage, were performed in the temperature range from 170 to 350 K. The frequency span was 1 Hz up to 1 MHz and the time range 5×10 −5–10 s. The analysis of the experimental results involved correlation between AC and transient conductivity. The AC and transient conductivity measurements obey the Power Law of Dielectric Universal Response. The analysis shows that, within the range of the frequency span and time range of the measurements, the electrical conductivity is governed by three conduction mechanisms: In the low temperature region, specifically from 170 to 230 K, tunneling is the prevailing conduction mechanism. In the temperature range from 230 to 350 K two more thermally activated mechanisms contribute to the conductivity of PS thin films. The Ohmic conduction mechanism follows tunneling and precedes the Poole–Frenkel conduction mechanism. The time interval within each of these mechanisms is the prevailing one depends on temperature and applied voltage. The activation energy of Ohmic conduction as well as the exponential factor of Poole–Frenkel mechanism have been calculated.</description><subject>Electrical conductivity</subject><subject>Ohmic</subject><subject>Poole–Frenkel</subject><subject>Porous silicon</subject><subject>Tunneling</subject><issn>0921-5107</issn><issn>1873-4944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BCEn0UM1n216kmXxCxY8uJ5DNplipJvWJF3w39vuildPc5jnfZl5ELqk5JYSWt69kZrRQlJSXRN2Q0gleSGP0IyqiheiFuIYzf6QU3SW0ichhDLGZsiuYdtDNHmIgB30EBwEC7hrcP4AnKMJyUPI2ASHF0sMLdgcvTUttl1wg81-5_P3xPdd7IaEk2_9uBrjPuDGt9t0jk4a0ya4-J1z9P74sF4-F6vXp5flYlVYzlUueEWpLSlnjXJUKsGE3EjG6koZIpSpnKh5JYQxdcNrs6m4NIyq0nIHXG1Kx-fo6tDbx-5rgJT11icLbWsCjJdppkgpuCpHUB5AG7uUIjS6j35r4remRE9K9V6pnnxpwvReqZZj7v6Qg_GLnYeok_WTLufjqEW7zv_T8AOjvX4M</recordid><startdate>20030815</startdate><enddate>20030815</enddate><creator>Theodoropoulou, M.</creator><creator>Krontiras, C.A.</creator><creator>Xanthopoulos, N.</creator><creator>Georga, S.N.</creator><creator>Pisanias, M.N.</creator><creator>Tsamis, C.</creator><creator>Nassiopoulou, A.G.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20030815</creationdate><title>Temperature dependence of the transient and AC electrical conductivity of porous silicon thin films</title><author>Theodoropoulou, M. ; Krontiras, C.A. ; Xanthopoulos, N. ; Georga, S.N. ; Pisanias, M.N. ; Tsamis, C. ; Nassiopoulou, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-3711c6132f8d1584245b522978a048a7d493744aa9f39ab735a2186c3de38b6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Electrical conductivity</topic><topic>Ohmic</topic><topic>Poole–Frenkel</topic><topic>Porous silicon</topic><topic>Tunneling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Theodoropoulou, M.</creatorcontrib><creatorcontrib>Krontiras, C.A.</creatorcontrib><creatorcontrib>Xanthopoulos, N.</creatorcontrib><creatorcontrib>Georga, S.N.</creatorcontrib><creatorcontrib>Pisanias, M.N.</creatorcontrib><creatorcontrib>Tsamis, C.</creatorcontrib><creatorcontrib>Nassiopoulou, A.G.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials science &amp; engineering. B, Solid-state materials for advanced technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Theodoropoulou, M.</au><au>Krontiras, C.A.</au><au>Xanthopoulos, N.</au><au>Georga, S.N.</au><au>Pisanias, M.N.</au><au>Tsamis, C.</au><au>Nassiopoulou, A.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature dependence of the transient and AC electrical conductivity of porous silicon thin films</atitle><jtitle>Materials science &amp; engineering. B, Solid-state materials for advanced technology</jtitle><date>2003-08-15</date><risdate>2003</risdate><volume>101</volume><issue>1</issue><spage>334</spage><epage>337</epage><pages>334-337</pages><issn>0921-5107</issn><eissn>1873-4944</eissn><abstract>In order to investigate the prevailing conduction mechanisms of porous silicon (PS) thin films AC impedance spectroscopy measurements, as well as transient current measurements, as a function of voltage, were performed in the temperature range from 170 to 350 K. The frequency span was 1 Hz up to 1 MHz and the time range 5×10 −5–10 s. The analysis of the experimental results involved correlation between AC and transient conductivity. The AC and transient conductivity measurements obey the Power Law of Dielectric Universal Response. The analysis shows that, within the range of the frequency span and time range of the measurements, the electrical conductivity is governed by three conduction mechanisms: In the low temperature region, specifically from 170 to 230 K, tunneling is the prevailing conduction mechanism. In the temperature range from 230 to 350 K two more thermally activated mechanisms contribute to the conductivity of PS thin films. The Ohmic conduction mechanism follows tunneling and precedes the Poole–Frenkel conduction mechanism. The time interval within each of these mechanisms is the prevailing one depends on temperature and applied voltage. The activation energy of Ohmic conduction as well as the exponential factor of Poole–Frenkel mechanism have been calculated.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0921-5107(02)00753-5</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5107
ispartof Materials science & engineering. B, Solid-state materials for advanced technology, 2003-08, Vol.101 (1), p.334-337
issn 0921-5107
1873-4944
language eng
recordid cdi_proquest_miscellaneous_28064386
source ScienceDirect Freedom Collection
subjects Electrical conductivity
Ohmic
Poole–Frenkel
Porous silicon
Tunneling
title Temperature dependence of the transient and AC electrical conductivity of porous silicon thin films
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A40%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20dependence%20of%20the%20transient%20and%20AC%20electrical%20conductivity%20of%20porous%20silicon%20thin%20films&rft.jtitle=Materials%20science%20&%20engineering.%20B,%20Solid-state%20materials%20for%20advanced%20technology&rft.au=Theodoropoulou,%20M.&rft.date=2003-08-15&rft.volume=101&rft.issue=1&rft.spage=334&rft.epage=337&rft.pages=334-337&rft.issn=0921-5107&rft.eissn=1873-4944&rft_id=info:doi/10.1016/S0921-5107(02)00753-5&rft_dat=%3Cproquest_cross%3E28064386%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-3711c6132f8d1584245b522978a048a7d493744aa9f39ab735a2186c3de38b6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28064386&rft_id=info:pmid/&rfr_iscdi=true