Loading…

A New Electromagnetic Crystal-Based Antenna for Ultrafast Radiolocation Applications

In this letter, a new antenna capable of radiolocating and tracking ultrafast targets is presented. Based on an electromagnetic crystal structure, the proposed antenna uses only one radiating element, and beam scanning is achieved by varying the frequency of the excitation signal. Thus, by exciting...

Full description

Saved in:
Bibliographic Details
Published in:IEEE antennas and wireless propagation letters 2006, Vol.5 (1), p.199-203
Main Authors: Ghanem, F., Delisle, G. Y., Denidni, T. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this letter, a new antenna capable of radiolocating and tracking ultrafast targets is presented. Based on an electromagnetic crystal structure, the proposed antenna uses only one radiating element, and beam scanning is achieved by varying the frequency of the excitation signal. Thus, by exciting the antenna with a wideband signal, different patterns will be deployed simultaneously allowing the space covered by the antenna to be scanned instantaneously. This property makes the proposed antenna ideal to radiolocate ultrafast targets that cannot be tracked by the traditional phased antenna arrays. Moreover, the proposed radiolocation process has strong immunity against signal amplitude variations, which makes the new antenna suitable to operate in hostile environments. To present the developed approach, both theoretical study and numerical simulations using the finite-difference time-domain (FDTD) method are given. To validate the developed approach, experimental measurements are also presented and discussed.
ISSN:1536-1225
1548-5757
DOI:10.1109/LAWP.2006.873953