Loading…

Mathematical Model for Covalent Proteolysis Targeting Chimeras: Thermodynamics and Kinetics Underlying Catalytic Efficiency

Proteolysis targeting chimeras (PROTACs), heterobifunctional protein degraders, have emerged as an exciting and transformative technology in chemical biology and drug discovery to degrade disease-causing proteins through co-opting of the ubiquitin–proteasome system (UPS). Here, we develop a mechanis...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medicinal chemistry 2023-05, Vol.66 (9), p.6239-6250
Main Author: Chaudhry, Charu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a348t-c1a9cd0e08da7f1344a6ddb4d6e2de8286c44cb822594075979d1befcad146863
cites cdi_FETCH-LOGICAL-a348t-c1a9cd0e08da7f1344a6ddb4d6e2de8286c44cb822594075979d1befcad146863
container_end_page 6250
container_issue 9
container_start_page 6239
container_title Journal of medicinal chemistry
container_volume 66
creator Chaudhry, Charu
description Proteolysis targeting chimeras (PROTACs), heterobifunctional protein degraders, have emerged as an exciting and transformative technology in chemical biology and drug discovery to degrade disease-causing proteins through co-opting of the ubiquitin–proteasome system (UPS). Here, we develop a mechanistic mathematical model for the use of irreversible covalent chemistry in targeted protein degradation (TPD) either to a target protein of interest (POI) or an E3 ligase ligand, considering the thermodynamic and kinetic factors governing ternary complex formation, ubiquitination, and degradation through the UPS. We highlight key advantages of covalency to the POI and E3 ligase and the underlying theoretical basis in the TPD reaction framework. We further identify regimes where covalency can serve to overcome weak binary binding affinities and improve the kinetics of ternary complex formation and degradation. Our results highlight the enhanced catalytic efficiency of covalent E3 PROTACs and thus their potential to improve the degradation of fast turnover targets.
doi_str_mv 10.1021/acs.jmedchem.2c02076
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2806994263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2806994263</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-c1a9cd0e08da7f1344a6ddb4d6e2de8286c44cb822594075979d1befcad146863</originalsourceid><addsrcrecordid>eNp9kEFPHCEYhomp0dX2HxjDsZdZgWEZxluzsdpU0x7W8-Rb-MbFMKAwazLpnxfdtUdP5ON73pfwEHLG2ZwzwS_A5PnjgNZscJgLwwRr1AGZ8YVgldRMfiEzxoSohBL1MTnJ-ZExVnNRH5HjuikVgusZ-XcHYymA0Rnw9C5a9LSPiS7jC3gMI_2b4ojRT9lluoL0gKMLD3S5cQMmyJd0tcE0RDsFGJzJFIKlv10oVBnug8Xkp_cAjOCnckuv-t4Zh8FMX8lhDz7jt_15Su5_Xq2WN9Xtn-tfyx-3FdRSj5Xh0BrLkGkLTc9rKUFZu5ZWobCohVZGSrPWQixayZpF27SWr7E3YLlUWtWn5Puu9ynF5y3msRtcNug9BIzb3AnNVNtKoeqCyh1qUsw5Yd89JTdAmjrOujftXdHefWjv9tpL7Hz_wnZddv9DH54LwHbAezxuUygf_rzzFZjAlHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806994263</pqid></control><display><type>article</type><title>Mathematical Model for Covalent Proteolysis Targeting Chimeras: Thermodynamics and Kinetics Underlying Catalytic Efficiency</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Chaudhry, Charu</creator><creatorcontrib>Chaudhry, Charu</creatorcontrib><description>Proteolysis targeting chimeras (PROTACs), heterobifunctional protein degraders, have emerged as an exciting and transformative technology in chemical biology and drug discovery to degrade disease-causing proteins through co-opting of the ubiquitin–proteasome system (UPS). Here, we develop a mechanistic mathematical model for the use of irreversible covalent chemistry in targeted protein degradation (TPD) either to a target protein of interest (POI) or an E3 ligase ligand, considering the thermodynamic and kinetic factors governing ternary complex formation, ubiquitination, and degradation through the UPS. We highlight key advantages of covalency to the POI and E3 ligase and the underlying theoretical basis in the TPD reaction framework. We further identify regimes where covalency can serve to overcome weak binary binding affinities and improve the kinetics of ternary complex formation and degradation. Our results highlight the enhanced catalytic efficiency of covalent E3 PROTACs and thus their potential to improve the degradation of fast turnover targets.</description><identifier>ISSN: 0022-2623</identifier><identifier>EISSN: 1520-4804</identifier><identifier>DOI: 10.1021/acs.jmedchem.2c02076</identifier><identifier>PMID: 37102218</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Kinetics ; Proteasome Endopeptidase Complex - metabolism ; Proteins - metabolism ; Proteolysis ; Proteolysis Targeting Chimera ; Thermodynamics ; Ubiquitin-Protein Ligases - metabolism ; Ubiquitination</subject><ispartof>Journal of medicinal chemistry, 2023-05, Vol.66 (9), p.6239-6250</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-c1a9cd0e08da7f1344a6ddb4d6e2de8286c44cb822594075979d1befcad146863</citedby><cites>FETCH-LOGICAL-a348t-c1a9cd0e08da7f1344a6ddb4d6e2de8286c44cb822594075979d1befcad146863</cites><orcidid>0000-0001-9572-8720</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37102218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chaudhry, Charu</creatorcontrib><title>Mathematical Model for Covalent Proteolysis Targeting Chimeras: Thermodynamics and Kinetics Underlying Catalytic Efficiency</title><title>Journal of medicinal chemistry</title><addtitle>J. Med. Chem</addtitle><description>Proteolysis targeting chimeras (PROTACs), heterobifunctional protein degraders, have emerged as an exciting and transformative technology in chemical biology and drug discovery to degrade disease-causing proteins through co-opting of the ubiquitin–proteasome system (UPS). Here, we develop a mechanistic mathematical model for the use of irreversible covalent chemistry in targeted protein degradation (TPD) either to a target protein of interest (POI) or an E3 ligase ligand, considering the thermodynamic and kinetic factors governing ternary complex formation, ubiquitination, and degradation through the UPS. We highlight key advantages of covalency to the POI and E3 ligase and the underlying theoretical basis in the TPD reaction framework. We further identify regimes where covalency can serve to overcome weak binary binding affinities and improve the kinetics of ternary complex formation and degradation. Our results highlight the enhanced catalytic efficiency of covalent E3 PROTACs and thus their potential to improve the degradation of fast turnover targets.</description><subject>Kinetics</subject><subject>Proteasome Endopeptidase Complex - metabolism</subject><subject>Proteins - metabolism</subject><subject>Proteolysis</subject><subject>Proteolysis Targeting Chimera</subject><subject>Thermodynamics</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><subject>Ubiquitination</subject><issn>0022-2623</issn><issn>1520-4804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFPHCEYhomp0dX2HxjDsZdZgWEZxluzsdpU0x7W8-Rb-MbFMKAwazLpnxfdtUdP5ON73pfwEHLG2ZwzwS_A5PnjgNZscJgLwwRr1AGZ8YVgldRMfiEzxoSohBL1MTnJ-ZExVnNRH5HjuikVgusZ-XcHYymA0Rnw9C5a9LSPiS7jC3gMI_2b4ojRT9lluoL0gKMLD3S5cQMmyJd0tcE0RDsFGJzJFIKlv10oVBnug8Xkp_cAjOCnckuv-t4Zh8FMX8lhDz7jt_15Su5_Xq2WN9Xtn-tfyx-3FdRSj5Xh0BrLkGkLTc9rKUFZu5ZWobCohVZGSrPWQixayZpF27SWr7E3YLlUWtWn5Puu9ynF5y3msRtcNug9BIzb3AnNVNtKoeqCyh1qUsw5Yd89JTdAmjrOujftXdHefWjv9tpL7Hz_wnZddv9DH54LwHbAezxuUygf_rzzFZjAlHQ</recordid><startdate>20230511</startdate><enddate>20230511</enddate><creator>Chaudhry, Charu</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9572-8720</orcidid></search><sort><creationdate>20230511</creationdate><title>Mathematical Model for Covalent Proteolysis Targeting Chimeras: Thermodynamics and Kinetics Underlying Catalytic Efficiency</title><author>Chaudhry, Charu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-c1a9cd0e08da7f1344a6ddb4d6e2de8286c44cb822594075979d1befcad146863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Kinetics</topic><topic>Proteasome Endopeptidase Complex - metabolism</topic><topic>Proteins - metabolism</topic><topic>Proteolysis</topic><topic>Proteolysis Targeting Chimera</topic><topic>Thermodynamics</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><topic>Ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaudhry, Charu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaudhry, Charu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical Model for Covalent Proteolysis Targeting Chimeras: Thermodynamics and Kinetics Underlying Catalytic Efficiency</atitle><jtitle>Journal of medicinal chemistry</jtitle><addtitle>J. Med. Chem</addtitle><date>2023-05-11</date><risdate>2023</risdate><volume>66</volume><issue>9</issue><spage>6239</spage><epage>6250</epage><pages>6239-6250</pages><issn>0022-2623</issn><eissn>1520-4804</eissn><abstract>Proteolysis targeting chimeras (PROTACs), heterobifunctional protein degraders, have emerged as an exciting and transformative technology in chemical biology and drug discovery to degrade disease-causing proteins through co-opting of the ubiquitin–proteasome system (UPS). Here, we develop a mechanistic mathematical model for the use of irreversible covalent chemistry in targeted protein degradation (TPD) either to a target protein of interest (POI) or an E3 ligase ligand, considering the thermodynamic and kinetic factors governing ternary complex formation, ubiquitination, and degradation through the UPS. We highlight key advantages of covalency to the POI and E3 ligase and the underlying theoretical basis in the TPD reaction framework. We further identify regimes where covalency can serve to overcome weak binary binding affinities and improve the kinetics of ternary complex formation and degradation. Our results highlight the enhanced catalytic efficiency of covalent E3 PROTACs and thus their potential to improve the degradation of fast turnover targets.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37102218</pmid><doi>10.1021/acs.jmedchem.2c02076</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9572-8720</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2623
ispartof Journal of medicinal chemistry, 2023-05, Vol.66 (9), p.6239-6250
issn 0022-2623
1520-4804
language eng
recordid cdi_proquest_miscellaneous_2806994263
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Kinetics
Proteasome Endopeptidase Complex - metabolism
Proteins - metabolism
Proteolysis
Proteolysis Targeting Chimera
Thermodynamics
Ubiquitin-Protein Ligases - metabolism
Ubiquitination
title Mathematical Model for Covalent Proteolysis Targeting Chimeras: Thermodynamics and Kinetics Underlying Catalytic Efficiency
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A48%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20Model%20for%20Covalent%20Proteolysis%20Targeting%20Chimeras:%20Thermodynamics%20and%20Kinetics%20Underlying%20Catalytic%20Efficiency&rft.jtitle=Journal%20of%20medicinal%20chemistry&rft.au=Chaudhry,%20Charu&rft.date=2023-05-11&rft.volume=66&rft.issue=9&rft.spage=6239&rft.epage=6250&rft.pages=6239-6250&rft.issn=0022-2623&rft.eissn=1520-4804&rft_id=info:doi/10.1021/acs.jmedchem.2c02076&rft_dat=%3Cproquest_cross%3E2806994263%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a348t-c1a9cd0e08da7f1344a6ddb4d6e2de8286c44cb822594075979d1befcad146863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2806994263&rft_id=info:pmid/37102218&rfr_iscdi=true