Loading…

Substrate coupling in a high-gain 30-Gb/s SiGe amplifier-modeling, suppression, and measurement

For demonstrating substrate coupling in high-gain broadband amplifiers, a limiting differential transimpedance amplifier has been developed and fabricated in a SiGe bipolar technology. It operates up to 30 Gb/s and stands out for a maximum (nonlinear) transimpedance in the limiting mode of 25 k/spl...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of solid-state circuits 2005-10, Vol.40 (10), p.2035-2045
Main Authors: Steiner, W., Rein, H.-M., Berntgen, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For demonstrating substrate coupling in high-gain broadband amplifiers, a limiting differential transimpedance amplifier has been developed and fabricated in a SiGe bipolar technology. It operates up to 30 Gb/s and stands out for a maximum (nonlinear) transimpedance in the limiting mode of 25 k/spl Omega/, resulting in a gain /spl times/ speed product as high as 750 k/spl Omega//spl middot/Gb/s. This record value could be achieved by applying several techniques for suppression of noise coupling simultaneously. The effectiveness of each technique was verified experimentally by measuring the output eye diagrams of different mounted amplifier versions. The high accuracy potential of the substrate modeling tools applied for optimizing the amplifier design has been demonstrated separately by measurements on special (mounted) test structures up to 40 GHz. These investigations also showed the strong degradation of shielding measures by bond inductances with increasing frequency.
ISSN:0018-9200
1558-173X
DOI:10.1109/JSSC.2005.852825