Loading…

Toward a Flame Embedding Model for Turbulent Combustion Simulation

Combustion in turbulent flows may take the form of a thin flame wrapped around vortical structures. For this regime, the flame embedding approach seeks to decouple computations of the "outer" nonreacting flow and the combustion zone by discretizing the flame surface into a number of elemen...

Full description

Saved in:
Bibliographic Details
Published in:AIAA journal 2003-04, Vol.41 (4), p.641-652
Main Authors: Marzouk, Y. M, Ghoniem, A. F, Najm, H. N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a401t-4a280cbfbef73d34c45118ca672e105c10cdf4217ac9b59447233a5a53de7d863
cites cdi_FETCH-LOGICAL-a401t-4a280cbfbef73d34c45118ca672e105c10cdf4217ac9b59447233a5a53de7d863
container_end_page 652
container_issue 4
container_start_page 641
container_title AIAA journal
container_volume 41
creator Marzouk, Y. M
Ghoniem, A. F
Najm, H. N
description Combustion in turbulent flows may take the form of a thin flame wrapped around vortical structures. For this regime, the flame embedding approach seeks to decouple computations of the "outer" nonreacting flow and the combustion zone by discretizing the flame surface into a number of elemental flames, each incorporating the local impact of unsteady flow-flame interaction. An unsteady strained laminar flame solver, based on a boundary-layer approximation of combustion in a time-dependent stagnation-point potential flow, is proposed as an elemental flame model. To validate the concept, two-dimensional simulations of premixed flame-vortex interactions are performed for a matrix of vortex strengths and length scales, and a section of the flame is selected for comparison with the flame embedding model results. Results show that using the flame leading-edge strain rate gives reasonable agreement in the cases of low strain rate and weak strain rate gradient within the flame structure. This agreement deteriorates substantially when both are high. We propose two different schemes, both based on averaging the strain rate across the flame structure, and demonstrate that agreement between the one-dimensional model and the two-dimensional simulation greatly improves when the actual strain rate at the reaction zone of the one-dimensional flame is made to match that of the two-dimensional flame. [PUBLICATION ABSTRACT]
doi_str_mv 10.2514/2.2018
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_28077553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>692978231</sourcerecordid><originalsourceid>FETCH-LOGICAL-a401t-4a280cbfbef73d34c45118ca672e105c10cdf4217ac9b59447233a5a53de7d863</originalsourceid><addsrcrecordid>eNqNkE1r20AQhpfQQFyn_Q0ipSEXpTv74ZWPrbGTQEIOdaG3ZbQfQWGldXcl0vz7SDhgSHvIaWaYh3eYh5DPQC-ZBPGNXTIK1RGZgeS85JX8_YHMKKVQgpDshHzM-XGcmKpgRn5s4xMmW2CxCdi6Yt3WztqmeyjuonWh8DEV2yHVQ3BdX6xiWw-5b2JX_GzaIeDUnpJjjyG7T691Tn5t1tvVdXl7f3Wz-n5boqDQlwJZRU3ta-cVt1wYIQEqgwvFHFBpgBrrBQOFZlnLpRCKcY4SJbdO2WrB5-R8n7tL8c_gcq_bJhsXAnYuDlmzSikOC3gHSJWSo5w5OXsDPsYhdeMTmk3ylODqkGZSzDk5r3epaTE9a6B6Eq6ZnoSP4NfXNMwGg0_YmSYfaKEAFmo5cl_2HDaIh4v_pF38j9pv9c567YcQeve35y-jlJZm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215337437</pqid></control><display><type>article</type><title>Toward a Flame Embedding Model for Turbulent Combustion Simulation</title><source>Alma/SFX Local Collection</source><creator>Marzouk, Y. M ; Ghoniem, A. F ; Najm, H. N</creator><creatorcontrib>Marzouk, Y. M ; Ghoniem, A. F ; Najm, H. N</creatorcontrib><description>Combustion in turbulent flows may take the form of a thin flame wrapped around vortical structures. For this regime, the flame embedding approach seeks to decouple computations of the "outer" nonreacting flow and the combustion zone by discretizing the flame surface into a number of elemental flames, each incorporating the local impact of unsteady flow-flame interaction. An unsteady strained laminar flame solver, based on a boundary-layer approximation of combustion in a time-dependent stagnation-point potential flow, is proposed as an elemental flame model. To validate the concept, two-dimensional simulations of premixed flame-vortex interactions are performed for a matrix of vortex strengths and length scales, and a section of the flame is selected for comparison with the flame embedding model results. Results show that using the flame leading-edge strain rate gives reasonable agreement in the cases of low strain rate and weak strain rate gradient within the flame structure. This agreement deteriorates substantially when both are high. We propose two different schemes, both based on averaging the strain rate across the flame structure, and demonstrate that agreement between the one-dimensional model and the two-dimensional simulation greatly improves when the actual strain rate at the reaction zone of the one-dimensional flame is made to match that of the two-dimensional flame. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/2.2018</identifier><identifier>CODEN: AIAJAH</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Applied sciences ; Combustion. Flame ; Embedded systems ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Simulation ; Theoretical studies ; Theoretical studies. Data and constants. Metering ; Turbulence models ; Turbulent flow</subject><ispartof>AIAA journal, 2003-04, Vol.41 (4), p.641-652</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Apr 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a401t-4a280cbfbef73d34c45118ca672e105c10cdf4217ac9b59447233a5a53de7d863</citedby><cites>FETCH-LOGICAL-a401t-4a280cbfbef73d34c45118ca672e105c10cdf4217ac9b59447233a5a53de7d863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14711679$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Marzouk, Y. M</creatorcontrib><creatorcontrib>Ghoniem, A. F</creatorcontrib><creatorcontrib>Najm, H. N</creatorcontrib><title>Toward a Flame Embedding Model for Turbulent Combustion Simulation</title><title>AIAA journal</title><description>Combustion in turbulent flows may take the form of a thin flame wrapped around vortical structures. For this regime, the flame embedding approach seeks to decouple computations of the "outer" nonreacting flow and the combustion zone by discretizing the flame surface into a number of elemental flames, each incorporating the local impact of unsteady flow-flame interaction. An unsteady strained laminar flame solver, based on a boundary-layer approximation of combustion in a time-dependent stagnation-point potential flow, is proposed as an elemental flame model. To validate the concept, two-dimensional simulations of premixed flame-vortex interactions are performed for a matrix of vortex strengths and length scales, and a section of the flame is selected for comparison with the flame embedding model results. Results show that using the flame leading-edge strain rate gives reasonable agreement in the cases of low strain rate and weak strain rate gradient within the flame structure. This agreement deteriorates substantially when both are high. We propose two different schemes, both based on averaging the strain rate across the flame structure, and demonstrate that agreement between the one-dimensional model and the two-dimensional simulation greatly improves when the actual strain rate at the reaction zone of the one-dimensional flame is made to match that of the two-dimensional flame. [PUBLICATION ABSTRACT]</description><subject>Applied sciences</subject><subject>Combustion. Flame</subject><subject>Embedded systems</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Simulation</subject><subject>Theoretical studies</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Turbulence models</subject><subject>Turbulent flow</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqNkE1r20AQhpfQQFyn_Q0ipSEXpTv74ZWPrbGTQEIOdaG3ZbQfQWGldXcl0vz7SDhgSHvIaWaYh3eYh5DPQC-ZBPGNXTIK1RGZgeS85JX8_YHMKKVQgpDshHzM-XGcmKpgRn5s4xMmW2CxCdi6Yt3WztqmeyjuonWh8DEV2yHVQ3BdX6xiWw-5b2JX_GzaIeDUnpJjjyG7T691Tn5t1tvVdXl7f3Wz-n5boqDQlwJZRU3ta-cVt1wYIQEqgwvFHFBpgBrrBQOFZlnLpRCKcY4SJbdO2WrB5-R8n7tL8c_gcq_bJhsXAnYuDlmzSikOC3gHSJWSo5w5OXsDPsYhdeMTmk3ylODqkGZSzDk5r3epaTE9a6B6Eq6ZnoSP4NfXNMwGg0_YmSYfaKEAFmo5cl_2HDaIh4v_pF38j9pv9c567YcQeve35y-jlJZm</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>Marzouk, Y. M</creator><creator>Ghoniem, A. F</creator><creator>Najm, H. N</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20030401</creationdate><title>Toward a Flame Embedding Model for Turbulent Combustion Simulation</title><author>Marzouk, Y. M ; Ghoniem, A. F ; Najm, H. N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a401t-4a280cbfbef73d34c45118ca672e105c10cdf4217ac9b59447233a5a53de7d863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Combustion. Flame</topic><topic>Embedded systems</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Simulation</topic><topic>Theoretical studies</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Turbulence models</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marzouk, Y. M</creatorcontrib><creatorcontrib>Ghoniem, A. F</creatorcontrib><creatorcontrib>Najm, H. N</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marzouk, Y. M</au><au>Ghoniem, A. F</au><au>Najm, H. N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward a Flame Embedding Model for Turbulent Combustion Simulation</atitle><jtitle>AIAA journal</jtitle><date>2003-04-01</date><risdate>2003</risdate><volume>41</volume><issue>4</issue><spage>641</spage><epage>652</epage><pages>641-652</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><coden>AIAJAH</coden><abstract>Combustion in turbulent flows may take the form of a thin flame wrapped around vortical structures. For this regime, the flame embedding approach seeks to decouple computations of the "outer" nonreacting flow and the combustion zone by discretizing the flame surface into a number of elemental flames, each incorporating the local impact of unsteady flow-flame interaction. An unsteady strained laminar flame solver, based on a boundary-layer approximation of combustion in a time-dependent stagnation-point potential flow, is proposed as an elemental flame model. To validate the concept, two-dimensional simulations of premixed flame-vortex interactions are performed for a matrix of vortex strengths and length scales, and a section of the flame is selected for comparison with the flame embedding model results. Results show that using the flame leading-edge strain rate gives reasonable agreement in the cases of low strain rate and weak strain rate gradient within the flame structure. This agreement deteriorates substantially when both are high. We propose two different schemes, both based on averaging the strain rate across the flame structure, and demonstrate that agreement between the one-dimensional model and the two-dimensional simulation greatly improves when the actual strain rate at the reaction zone of the one-dimensional flame is made to match that of the two-dimensional flame. [PUBLICATION ABSTRACT]</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/2.2018</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2003-04, Vol.41 (4), p.641-652
issn 0001-1452
1533-385X
language eng
recordid cdi_proquest_miscellaneous_28077553
source Alma/SFX Local Collection
subjects Applied sciences
Combustion. Flame
Embedded systems
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Simulation
Theoretical studies
Theoretical studies. Data and constants. Metering
Turbulence models
Turbulent flow
title Toward a Flame Embedding Model for Turbulent Combustion Simulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A29%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20a%20Flame%20Embedding%20Model%20for%20Turbulent%20Combustion%20Simulation&rft.jtitle=AIAA%20journal&rft.au=Marzouk,%20Y.%20M&rft.date=2003-04-01&rft.volume=41&rft.issue=4&rft.spage=641&rft.epage=652&rft.pages=641-652&rft.issn=0001-1452&rft.eissn=1533-385X&rft.coden=AIAJAH&rft_id=info:doi/10.2514/2.2018&rft_dat=%3Cproquest_pasca%3E692978231%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a401t-4a280cbfbef73d34c45118ca672e105c10cdf4217ac9b59447233a5a53de7d863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215337437&rft_id=info:pmid/&rfr_iscdi=true