Loading…
Toward a Flame Embedding Model for Turbulent Combustion Simulation
Combustion in turbulent flows may take the form of a thin flame wrapped around vortical structures. For this regime, the flame embedding approach seeks to decouple computations of the "outer" nonreacting flow and the combustion zone by discretizing the flame surface into a number of elemen...
Saved in:
Published in: | AIAA journal 2003-04, Vol.41 (4), p.641-652 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a401t-4a280cbfbef73d34c45118ca672e105c10cdf4217ac9b59447233a5a53de7d863 |
---|---|
cites | cdi_FETCH-LOGICAL-a401t-4a280cbfbef73d34c45118ca672e105c10cdf4217ac9b59447233a5a53de7d863 |
container_end_page | 652 |
container_issue | 4 |
container_start_page | 641 |
container_title | AIAA journal |
container_volume | 41 |
creator | Marzouk, Y. M Ghoniem, A. F Najm, H. N |
description | Combustion in turbulent flows may take the form of a thin flame wrapped around vortical structures. For this regime, the flame embedding approach seeks to decouple computations of the "outer" nonreacting flow and the combustion zone by discretizing the flame surface into a number of elemental flames, each incorporating the local impact of unsteady flow-flame interaction. An unsteady strained laminar flame solver, based on a boundary-layer approximation of combustion in a time-dependent stagnation-point potential flow, is proposed as an elemental flame model. To validate the concept, two-dimensional simulations of premixed flame-vortex interactions are performed for a matrix of vortex strengths and length scales, and a section of the flame is selected for comparison with the flame embedding model results. Results show that using the flame leading-edge strain rate gives reasonable agreement in the cases of low strain rate and weak strain rate gradient within the flame structure. This agreement deteriorates substantially when both are high. We propose two different schemes, both based on averaging the strain rate across the flame structure, and demonstrate that agreement between the one-dimensional model and the two-dimensional simulation greatly improves when the actual strain rate at the reaction zone of the one-dimensional flame is made to match that of the two-dimensional flame. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.2514/2.2018 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_28077553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>692978231</sourcerecordid><originalsourceid>FETCH-LOGICAL-a401t-4a280cbfbef73d34c45118ca672e105c10cdf4217ac9b59447233a5a53de7d863</originalsourceid><addsrcrecordid>eNqNkE1r20AQhpfQQFyn_Q0ipSEXpTv74ZWPrbGTQEIOdaG3ZbQfQWGldXcl0vz7SDhgSHvIaWaYh3eYh5DPQC-ZBPGNXTIK1RGZgeS85JX8_YHMKKVQgpDshHzM-XGcmKpgRn5s4xMmW2CxCdi6Yt3WztqmeyjuonWh8DEV2yHVQ3BdX6xiWw-5b2JX_GzaIeDUnpJjjyG7T691Tn5t1tvVdXl7f3Wz-n5boqDQlwJZRU3ta-cVt1wYIQEqgwvFHFBpgBrrBQOFZlnLpRCKcY4SJbdO2WrB5-R8n7tL8c_gcq_bJhsXAnYuDlmzSikOC3gHSJWSo5w5OXsDPsYhdeMTmk3ylODqkGZSzDk5r3epaTE9a6B6Eq6ZnoSP4NfXNMwGg0_YmSYfaKEAFmo5cl_2HDaIh4v_pF38j9pv9c567YcQeve35y-jlJZm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215337437</pqid></control><display><type>article</type><title>Toward a Flame Embedding Model for Turbulent Combustion Simulation</title><source>Alma/SFX Local Collection</source><creator>Marzouk, Y. M ; Ghoniem, A. F ; Najm, H. N</creator><creatorcontrib>Marzouk, Y. M ; Ghoniem, A. F ; Najm, H. N</creatorcontrib><description>Combustion in turbulent flows may take the form of a thin flame wrapped around vortical structures. For this regime, the flame embedding approach seeks to decouple computations of the "outer" nonreacting flow and the combustion zone by discretizing the flame surface into a number of elemental flames, each incorporating the local impact of unsteady flow-flame interaction. An unsteady strained laminar flame solver, based on a boundary-layer approximation of combustion in a time-dependent stagnation-point potential flow, is proposed as an elemental flame model. To validate the concept, two-dimensional simulations of premixed flame-vortex interactions are performed for a matrix of vortex strengths and length scales, and a section of the flame is selected for comparison with the flame embedding model results. Results show that using the flame leading-edge strain rate gives reasonable agreement in the cases of low strain rate and weak strain rate gradient within the flame structure. This agreement deteriorates substantially when both are high. We propose two different schemes, both based on averaging the strain rate across the flame structure, and demonstrate that agreement between the one-dimensional model and the two-dimensional simulation greatly improves when the actual strain rate at the reaction zone of the one-dimensional flame is made to match that of the two-dimensional flame. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/2.2018</identifier><identifier>CODEN: AIAJAH</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Applied sciences ; Combustion. Flame ; Embedded systems ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Simulation ; Theoretical studies ; Theoretical studies. Data and constants. Metering ; Turbulence models ; Turbulent flow</subject><ispartof>AIAA journal, 2003-04, Vol.41 (4), p.641-652</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Apr 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a401t-4a280cbfbef73d34c45118ca672e105c10cdf4217ac9b59447233a5a53de7d863</citedby><cites>FETCH-LOGICAL-a401t-4a280cbfbef73d34c45118ca672e105c10cdf4217ac9b59447233a5a53de7d863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14711679$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Marzouk, Y. M</creatorcontrib><creatorcontrib>Ghoniem, A. F</creatorcontrib><creatorcontrib>Najm, H. N</creatorcontrib><title>Toward a Flame Embedding Model for Turbulent Combustion Simulation</title><title>AIAA journal</title><description>Combustion in turbulent flows may take the form of a thin flame wrapped around vortical structures. For this regime, the flame embedding approach seeks to decouple computations of the "outer" nonreacting flow and the combustion zone by discretizing the flame surface into a number of elemental flames, each incorporating the local impact of unsteady flow-flame interaction. An unsteady strained laminar flame solver, based on a boundary-layer approximation of combustion in a time-dependent stagnation-point potential flow, is proposed as an elemental flame model. To validate the concept, two-dimensional simulations of premixed flame-vortex interactions are performed for a matrix of vortex strengths and length scales, and a section of the flame is selected for comparison with the flame embedding model results. Results show that using the flame leading-edge strain rate gives reasonable agreement in the cases of low strain rate and weak strain rate gradient within the flame structure. This agreement deteriorates substantially when both are high. We propose two different schemes, both based on averaging the strain rate across the flame structure, and demonstrate that agreement between the one-dimensional model and the two-dimensional simulation greatly improves when the actual strain rate at the reaction zone of the one-dimensional flame is made to match that of the two-dimensional flame. [PUBLICATION ABSTRACT]</description><subject>Applied sciences</subject><subject>Combustion. Flame</subject><subject>Embedded systems</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Simulation</subject><subject>Theoretical studies</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Turbulence models</subject><subject>Turbulent flow</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqNkE1r20AQhpfQQFyn_Q0ipSEXpTv74ZWPrbGTQEIOdaG3ZbQfQWGldXcl0vz7SDhgSHvIaWaYh3eYh5DPQC-ZBPGNXTIK1RGZgeS85JX8_YHMKKVQgpDshHzM-XGcmKpgRn5s4xMmW2CxCdi6Yt3WztqmeyjuonWh8DEV2yHVQ3BdX6xiWw-5b2JX_GzaIeDUnpJjjyG7T691Tn5t1tvVdXl7f3Wz-n5boqDQlwJZRU3ta-cVt1wYIQEqgwvFHFBpgBrrBQOFZlnLpRCKcY4SJbdO2WrB5-R8n7tL8c_gcq_bJhsXAnYuDlmzSikOC3gHSJWSo5w5OXsDPsYhdeMTmk3ylODqkGZSzDk5r3epaTE9a6B6Eq6ZnoSP4NfXNMwGg0_YmSYfaKEAFmo5cl_2HDaIh4v_pF38j9pv9c567YcQeve35y-jlJZm</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>Marzouk, Y. M</creator><creator>Ghoniem, A. F</creator><creator>Najm, H. N</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20030401</creationdate><title>Toward a Flame Embedding Model for Turbulent Combustion Simulation</title><author>Marzouk, Y. M ; Ghoniem, A. F ; Najm, H. N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a401t-4a280cbfbef73d34c45118ca672e105c10cdf4217ac9b59447233a5a53de7d863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Combustion. Flame</topic><topic>Embedded systems</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Simulation</topic><topic>Theoretical studies</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Turbulence models</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marzouk, Y. M</creatorcontrib><creatorcontrib>Ghoniem, A. F</creatorcontrib><creatorcontrib>Najm, H. N</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marzouk, Y. M</au><au>Ghoniem, A. F</au><au>Najm, H. N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward a Flame Embedding Model for Turbulent Combustion Simulation</atitle><jtitle>AIAA journal</jtitle><date>2003-04-01</date><risdate>2003</risdate><volume>41</volume><issue>4</issue><spage>641</spage><epage>652</epage><pages>641-652</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><coden>AIAJAH</coden><abstract>Combustion in turbulent flows may take the form of a thin flame wrapped around vortical structures. For this regime, the flame embedding approach seeks to decouple computations of the "outer" nonreacting flow and the combustion zone by discretizing the flame surface into a number of elemental flames, each incorporating the local impact of unsteady flow-flame interaction. An unsteady strained laminar flame solver, based on a boundary-layer approximation of combustion in a time-dependent stagnation-point potential flow, is proposed as an elemental flame model. To validate the concept, two-dimensional simulations of premixed flame-vortex interactions are performed for a matrix of vortex strengths and length scales, and a section of the flame is selected for comparison with the flame embedding model results. Results show that using the flame leading-edge strain rate gives reasonable agreement in the cases of low strain rate and weak strain rate gradient within the flame structure. This agreement deteriorates substantially when both are high. We propose two different schemes, both based on averaging the strain rate across the flame structure, and demonstrate that agreement between the one-dimensional model and the two-dimensional simulation greatly improves when the actual strain rate at the reaction zone of the one-dimensional flame is made to match that of the two-dimensional flame. [PUBLICATION ABSTRACT]</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/2.2018</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1452 |
ispartof | AIAA journal, 2003-04, Vol.41 (4), p.641-652 |
issn | 0001-1452 1533-385X |
language | eng |
recordid | cdi_proquest_miscellaneous_28077553 |
source | Alma/SFX Local Collection |
subjects | Applied sciences Combustion. Flame Embedded systems Energy Energy. Thermal use of fuels Exact sciences and technology Simulation Theoretical studies Theoretical studies. Data and constants. Metering Turbulence models Turbulent flow |
title | Toward a Flame Embedding Model for Turbulent Combustion Simulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A29%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20a%20Flame%20Embedding%20Model%20for%20Turbulent%20Combustion%20Simulation&rft.jtitle=AIAA%20journal&rft.au=Marzouk,%20Y.%20M&rft.date=2003-04-01&rft.volume=41&rft.issue=4&rft.spage=641&rft.epage=652&rft.pages=641-652&rft.issn=0001-1452&rft.eissn=1533-385X&rft.coden=AIAJAH&rft_id=info:doi/10.2514/2.2018&rft_dat=%3Cproquest_pasca%3E692978231%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a401t-4a280cbfbef73d34c45118ca672e105c10cdf4217ac9b59447233a5a53de7d863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215337437&rft_id=info:pmid/&rfr_iscdi=true |