Loading…
Accurate prediction and key protein sequence feature identification of cyclins
Abstract Cyclin proteins are a group of proteins that activate the cell cycle by forming complexes with cyclin-dependent kinases. Identifying cyclins correctly can provide key clues to understanding the function of cyclins. However, due to the low similarity between cyclin protein sequences, the adv...
Saved in:
Published in: | Briefings in functional genomics 2023-11, Vol.22 (5), p.411-419 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Cyclin proteins are a group of proteins that activate the cell cycle by forming complexes with cyclin-dependent kinases. Identifying cyclins correctly can provide key clues to understanding the function of cyclins. However, due to the low similarity between cyclin protein sequences, the advancement of a machine learning-based approach to identify cycles is urgently needed. In this study, cyclin protein sequence features were extracted using the profile-based auto-cross covariance method. Then the features were ranked and selected with maximum relevance-maximum distance (MRMD) 1.0 and MRMD2.0. Finally, the prediction model was assessed through 10-fold cross-validation. The computational experiments showed that the best protein sequence features generated by MRMD1.0 could correctly predict 98.2% of cyclins using the random forest (RF) classifier, whereas seven-dimensional key protein sequence features identified with MRMD2.0 could correctly predict 96.1% of cyclins, which was superior to previous studies on the same dataset both in terms of dimensionality and performance comparisons. Therefore, our work provided a valuable tool for identifying cyclins. The model data can be downloaded from https://github.com/YUshunL/cyclin. |
---|---|
ISSN: | 2041-2649 2041-2657 |
DOI: | 10.1093/bfgp/elad014 |