Loading…

Accurate prediction and key protein sequence feature identification of cyclins

Abstract Cyclin proteins are a group of proteins that activate the cell cycle by forming complexes with cyclin-dependent kinases. Identifying cyclins correctly can provide key clues to understanding the function of cyclins. However, due to the low similarity between cyclin protein sequences, the adv...

Full description

Saved in:
Bibliographic Details
Published in:Briefings in functional genomics 2023-11, Vol.22 (5), p.411-419
Main Authors: Yu, Shaoyou, Liao, Bo, Zhu, Wen, Peng, Dejun, Wu, Fangxiang
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Cyclin proteins are a group of proteins that activate the cell cycle by forming complexes with cyclin-dependent kinases. Identifying cyclins correctly can provide key clues to understanding the function of cyclins. However, due to the low similarity between cyclin protein sequences, the advancement of a machine learning-based approach to identify cycles is urgently needed. In this study, cyclin protein sequence features were extracted using the profile-based auto-cross covariance method. Then the features were ranked and selected with maximum relevance-maximum distance (MRMD) 1.0 and MRMD2.0. Finally, the prediction model was assessed through 10-fold cross-validation. The computational experiments showed that the best protein sequence features generated by MRMD1.0 could correctly predict 98.2% of cyclins using the random forest (RF) classifier, whereas seven-dimensional key protein sequence features identified with MRMD2.0 could correctly predict 96.1% of cyclins, which was superior to previous studies on the same dataset both in terms of dimensionality and performance comparisons. Therefore, our work provided a valuable tool for identifying cyclins. The model data can be downloaded from https://github.com/YUshunL/cyclin.
ISSN:2041-2649
2041-2657
DOI:10.1093/bfgp/elad014