Loading…
The shape anisotropy of magnetic nanoparticles: an approach to cell-type selective and enhanced internalization
The effects of the shape anisotropy of nanoparticles on cellular uptake is still poorly understood due to challenges in the synthesis of anisotropic magnetic nanoparticles of the same composition. Here, we design and synthesize spherical magnetic nanoparticles and their anisotropic assemblies, namel...
Saved in:
Published in: | Nanoscale 2023-05, Vol.15 (19), p.8611-8618 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c373t-9171babf16b4edf56dfb52d6a2c7019adffd03f92e6dcd474500cfd3ab4d6b423 |
---|---|
cites | cdi_FETCH-LOGICAL-c373t-9171babf16b4edf56dfb52d6a2c7019adffd03f92e6dcd474500cfd3ab4d6b423 |
container_end_page | 8618 |
container_issue | 19 |
container_start_page | 8611 |
container_title | Nanoscale |
container_volume | 15 |
creator | Potr, Tanja Kralj, Slavko Nemec, Sebastjan Kocbek, Petra Erdani Kreft, Mateja |
description | The effects of the shape anisotropy of nanoparticles on cellular uptake is still poorly understood due to challenges in the synthesis of anisotropic magnetic nanoparticles of the same composition. Here, we design and synthesize spherical magnetic nanoparticles and their anisotropic assemblies, namely magnetic nanochains (length ∼800 nm). Then, nanoparticle shape anisotropy is investigated on urothelial cells
in vitro
. Although both shapes of nanomaterials reveal biocompatibility, we havefound significant differences in the extent of their intracellular accumulation. Contrary to spherical particles, anisotropic nanochains preferentially accumulate in cancer cells as confirmed by inductively coupled plasma (ICP) analysis, indicating that control of the nanoparticle shape geometry governs cell-type-selective intracellular uptake and accumulation.
Spherical nanoparticles and anisotropic magnetic nanochains were synthesized, and the impact of their shape anisotropy on cellular uptake was studied. Our findings reveal significant differences in the extent of their intracellular accumulation. |
doi_str_mv | 10.1039/d2nr06965b |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2807924280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807924280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-9171babf16b4edf56dfb52d6a2c7019adffd03f92e6dcd474500cfd3ab4d6b423</originalsourceid><addsrcrecordid>eNpd0d9LHDEQB_BQWtRaX_reEuiLFLbNr93c-mZttYJUKPZ5mU0mvZW9ZE1ywvnXm_X0Cn2agXxmGPIl5D1nXziT7VcrfGRN29T9K3IgmGKVlFq83vWN2idvU7plBclG7pF9qTlXaqEPSLhZIk1LmJCCH1LIMUwbGhxdwV-PeTDUgw8TxNKOmE6KojBNMYBZ0hyowXGs8qaMJxzR5OF-XmQp-iV4g5YOPmP0MA4PkIfg35E3DsaER8_1kPw5_3Fz9rO6ur64PDu9qozUMlct17yH3vGmV2hd3VjX18I2IIxmvAXrnGXStQIba6zSqmbMOCuhV7aMCHlIjrd7y6l3a0y5Ww1pPhY8hnXqxILpVqhSCv30H70N6_nkWXG1kDVTuqjPW2ViSCmi66Y4rCBuOs66OYbuu_j1-ymGbwV_fF657ldod_Tl3wv4sAUxmd3rvxzlI7tIjqU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814835047</pqid></control><display><type>article</type><title>The shape anisotropy of magnetic nanoparticles: an approach to cell-type selective and enhanced internalization</title><source>Royal Society of Chemistry</source><creator>Potr, Tanja ; Kralj, Slavko ; Nemec, Sebastjan ; Kocbek, Petra ; Erdani Kreft, Mateja</creator><creatorcontrib>Potr, Tanja ; Kralj, Slavko ; Nemec, Sebastjan ; Kocbek, Petra ; Erdani Kreft, Mateja</creatorcontrib><description>The effects of the shape anisotropy of nanoparticles on cellular uptake is still poorly understood due to challenges in the synthesis of anisotropic magnetic nanoparticles of the same composition. Here, we design and synthesize spherical magnetic nanoparticles and their anisotropic assemblies, namely magnetic nanochains (length ∼800 nm). Then, nanoparticle shape anisotropy is investigated on urothelial cells
in vitro
. Although both shapes of nanomaterials reveal biocompatibility, we havefound significant differences in the extent of their intracellular accumulation. Contrary to spherical particles, anisotropic nanochains preferentially accumulate in cancer cells as confirmed by inductively coupled plasma (ICP) analysis, indicating that control of the nanoparticle shape geometry governs cell-type-selective intracellular uptake and accumulation.
Spherical nanoparticles and anisotropic magnetic nanochains were synthesized, and the impact of their shape anisotropy on cellular uptake was studied. Our findings reveal significant differences in the extent of their intracellular accumulation.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d2nr06965b</identifier><identifier>PMID: 37114487</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Accumulation ; Anisotropy ; Biocompatibility ; Inductively coupled plasma ; Magnetics ; Magnetite Nanoparticles ; Nanomaterials ; Nanoparticles ; Shape effects</subject><ispartof>Nanoscale, 2023-05, Vol.15 (19), p.8611-8618</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-9171babf16b4edf56dfb52d6a2c7019adffd03f92e6dcd474500cfd3ab4d6b423</citedby><cites>FETCH-LOGICAL-c373t-9171babf16b4edf56dfb52d6a2c7019adffd03f92e6dcd474500cfd3ab4d6b423</cites><orcidid>0000-0002-9403-8274</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37114487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Potr, Tanja</creatorcontrib><creatorcontrib>Kralj, Slavko</creatorcontrib><creatorcontrib>Nemec, Sebastjan</creatorcontrib><creatorcontrib>Kocbek, Petra</creatorcontrib><creatorcontrib>Erdani Kreft, Mateja</creatorcontrib><title>The shape anisotropy of magnetic nanoparticles: an approach to cell-type selective and enhanced internalization</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>The effects of the shape anisotropy of nanoparticles on cellular uptake is still poorly understood due to challenges in the synthesis of anisotropic magnetic nanoparticles of the same composition. Here, we design and synthesize spherical magnetic nanoparticles and their anisotropic assemblies, namely magnetic nanochains (length ∼800 nm). Then, nanoparticle shape anisotropy is investigated on urothelial cells
in vitro
. Although both shapes of nanomaterials reveal biocompatibility, we havefound significant differences in the extent of their intracellular accumulation. Contrary to spherical particles, anisotropic nanochains preferentially accumulate in cancer cells as confirmed by inductively coupled plasma (ICP) analysis, indicating that control of the nanoparticle shape geometry governs cell-type-selective intracellular uptake and accumulation.
Spherical nanoparticles and anisotropic magnetic nanochains were synthesized, and the impact of their shape anisotropy on cellular uptake was studied. Our findings reveal significant differences in the extent of their intracellular accumulation.</description><subject>Accumulation</subject><subject>Anisotropy</subject><subject>Biocompatibility</subject><subject>Inductively coupled plasma</subject><subject>Magnetics</subject><subject>Magnetite Nanoparticles</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Shape effects</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0d9LHDEQB_BQWtRaX_reEuiLFLbNr93c-mZttYJUKPZ5mU0mvZW9ZE1ywvnXm_X0Cn2agXxmGPIl5D1nXziT7VcrfGRN29T9K3IgmGKVlFq83vWN2idvU7plBclG7pF9qTlXaqEPSLhZIk1LmJCCH1LIMUwbGhxdwV-PeTDUgw8TxNKOmE6KojBNMYBZ0hyowXGs8qaMJxzR5OF-XmQp-iV4g5YOPmP0MA4PkIfg35E3DsaER8_1kPw5_3Fz9rO6ur64PDu9qozUMlct17yH3vGmV2hd3VjX18I2IIxmvAXrnGXStQIba6zSqmbMOCuhV7aMCHlIjrd7y6l3a0y5Ww1pPhY8hnXqxILpVqhSCv30H70N6_nkWXG1kDVTuqjPW2ViSCmi66Y4rCBuOs66OYbuu_j1-ymGbwV_fF657ldod_Tl3wv4sAUxmd3rvxzlI7tIjqU</recordid><startdate>20230518</startdate><enddate>20230518</enddate><creator>Potr, Tanja</creator><creator>Kralj, Slavko</creator><creator>Nemec, Sebastjan</creator><creator>Kocbek, Petra</creator><creator>Erdani Kreft, Mateja</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9403-8274</orcidid></search><sort><creationdate>20230518</creationdate><title>The shape anisotropy of magnetic nanoparticles: an approach to cell-type selective and enhanced internalization</title><author>Potr, Tanja ; Kralj, Slavko ; Nemec, Sebastjan ; Kocbek, Petra ; Erdani Kreft, Mateja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-9171babf16b4edf56dfb52d6a2c7019adffd03f92e6dcd474500cfd3ab4d6b423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accumulation</topic><topic>Anisotropy</topic><topic>Biocompatibility</topic><topic>Inductively coupled plasma</topic><topic>Magnetics</topic><topic>Magnetite Nanoparticles</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Shape effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Potr, Tanja</creatorcontrib><creatorcontrib>Kralj, Slavko</creatorcontrib><creatorcontrib>Nemec, Sebastjan</creatorcontrib><creatorcontrib>Kocbek, Petra</creatorcontrib><creatorcontrib>Erdani Kreft, Mateja</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Potr, Tanja</au><au>Kralj, Slavko</au><au>Nemec, Sebastjan</au><au>Kocbek, Petra</au><au>Erdani Kreft, Mateja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The shape anisotropy of magnetic nanoparticles: an approach to cell-type selective and enhanced internalization</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2023-05-18</date><risdate>2023</risdate><volume>15</volume><issue>19</issue><spage>8611</spage><epage>8618</epage><pages>8611-8618</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The effects of the shape anisotropy of nanoparticles on cellular uptake is still poorly understood due to challenges in the synthesis of anisotropic magnetic nanoparticles of the same composition. Here, we design and synthesize spherical magnetic nanoparticles and their anisotropic assemblies, namely magnetic nanochains (length ∼800 nm). Then, nanoparticle shape anisotropy is investigated on urothelial cells
in vitro
. Although both shapes of nanomaterials reveal biocompatibility, we havefound significant differences in the extent of their intracellular accumulation. Contrary to spherical particles, anisotropic nanochains preferentially accumulate in cancer cells as confirmed by inductively coupled plasma (ICP) analysis, indicating that control of the nanoparticle shape geometry governs cell-type-selective intracellular uptake and accumulation.
Spherical nanoparticles and anisotropic magnetic nanochains were synthesized, and the impact of their shape anisotropy on cellular uptake was studied. Our findings reveal significant differences in the extent of their intracellular accumulation.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37114487</pmid><doi>10.1039/d2nr06965b</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9403-8274</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2023-05, Vol.15 (19), p.8611-8618 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_2807924280 |
source | Royal Society of Chemistry |
subjects | Accumulation Anisotropy Biocompatibility Inductively coupled plasma Magnetics Magnetite Nanoparticles Nanomaterials Nanoparticles Shape effects |
title | The shape anisotropy of magnetic nanoparticles: an approach to cell-type selective and enhanced internalization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A20%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20shape%20anisotropy%20of%20magnetic%20nanoparticles:%20an%20approach%20to%20cell-type%20selective%20and%20enhanced%20internalization&rft.jtitle=Nanoscale&rft.au=Potr,%20Tanja&rft.date=2023-05-18&rft.volume=15&rft.issue=19&rft.spage=8611&rft.epage=8618&rft.pages=8611-8618&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d2nr06965b&rft_dat=%3Cproquest_cross%3E2807924280%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-9171babf16b4edf56dfb52d6a2c7019adffd03f92e6dcd474500cfd3ab4d6b423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2814835047&rft_id=info:pmid/37114487&rfr_iscdi=true |