Loading…

The shape anisotropy of magnetic nanoparticles: an approach to cell-type selective and enhanced internalization

The effects of the shape anisotropy of nanoparticles on cellular uptake is still poorly understood due to challenges in the synthesis of anisotropic magnetic nanoparticles of the same composition. Here, we design and synthesize spherical magnetic nanoparticles and their anisotropic assemblies, namel...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2023-05, Vol.15 (19), p.8611-8618
Main Authors: Potr, Tanja, Kralj, Slavko, Nemec, Sebastjan, Kocbek, Petra, Erdani Kreft, Mateja
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c373t-9171babf16b4edf56dfb52d6a2c7019adffd03f92e6dcd474500cfd3ab4d6b423
cites cdi_FETCH-LOGICAL-c373t-9171babf16b4edf56dfb52d6a2c7019adffd03f92e6dcd474500cfd3ab4d6b423
container_end_page 8618
container_issue 19
container_start_page 8611
container_title Nanoscale
container_volume 15
creator Potr, Tanja
Kralj, Slavko
Nemec, Sebastjan
Kocbek, Petra
Erdani Kreft, Mateja
description The effects of the shape anisotropy of nanoparticles on cellular uptake is still poorly understood due to challenges in the synthesis of anisotropic magnetic nanoparticles of the same composition. Here, we design and synthesize spherical magnetic nanoparticles and their anisotropic assemblies, namely magnetic nanochains (length ∼800 nm). Then, nanoparticle shape anisotropy is investigated on urothelial cells in vitro . Although both shapes of nanomaterials reveal biocompatibility, we havefound significant differences in the extent of their intracellular accumulation. Contrary to spherical particles, anisotropic nanochains preferentially accumulate in cancer cells as confirmed by inductively coupled plasma (ICP) analysis, indicating that control of the nanoparticle shape geometry governs cell-type-selective intracellular uptake and accumulation. Spherical nanoparticles and anisotropic magnetic nanochains were synthesized, and the impact of their shape anisotropy on cellular uptake was studied. Our findings reveal significant differences in the extent of their intracellular accumulation.
doi_str_mv 10.1039/d2nr06965b
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2807924280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807924280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-9171babf16b4edf56dfb52d6a2c7019adffd03f92e6dcd474500cfd3ab4d6b423</originalsourceid><addsrcrecordid>eNpd0d9LHDEQB_BQWtRaX_reEuiLFLbNr93c-mZttYJUKPZ5mU0mvZW9ZE1ywvnXm_X0Cn2agXxmGPIl5D1nXziT7VcrfGRN29T9K3IgmGKVlFq83vWN2idvU7plBclG7pF9qTlXaqEPSLhZIk1LmJCCH1LIMUwbGhxdwV-PeTDUgw8TxNKOmE6KojBNMYBZ0hyowXGs8qaMJxzR5OF-XmQp-iV4g5YOPmP0MA4PkIfg35E3DsaER8_1kPw5_3Fz9rO6ur64PDu9qozUMlct17yH3vGmV2hd3VjX18I2IIxmvAXrnGXStQIba6zSqmbMOCuhV7aMCHlIjrd7y6l3a0y5Ww1pPhY8hnXqxILpVqhSCv30H70N6_nkWXG1kDVTuqjPW2ViSCmi66Y4rCBuOs66OYbuu_j1-ymGbwV_fF657ldod_Tl3wv4sAUxmd3rvxzlI7tIjqU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814835047</pqid></control><display><type>article</type><title>The shape anisotropy of magnetic nanoparticles: an approach to cell-type selective and enhanced internalization</title><source>Royal Society of Chemistry</source><creator>Potr, Tanja ; Kralj, Slavko ; Nemec, Sebastjan ; Kocbek, Petra ; Erdani Kreft, Mateja</creator><creatorcontrib>Potr, Tanja ; Kralj, Slavko ; Nemec, Sebastjan ; Kocbek, Petra ; Erdani Kreft, Mateja</creatorcontrib><description>The effects of the shape anisotropy of nanoparticles on cellular uptake is still poorly understood due to challenges in the synthesis of anisotropic magnetic nanoparticles of the same composition. Here, we design and synthesize spherical magnetic nanoparticles and their anisotropic assemblies, namely magnetic nanochains (length ∼800 nm). Then, nanoparticle shape anisotropy is investigated on urothelial cells in vitro . Although both shapes of nanomaterials reveal biocompatibility, we havefound significant differences in the extent of their intracellular accumulation. Contrary to spherical particles, anisotropic nanochains preferentially accumulate in cancer cells as confirmed by inductively coupled plasma (ICP) analysis, indicating that control of the nanoparticle shape geometry governs cell-type-selective intracellular uptake and accumulation. Spherical nanoparticles and anisotropic magnetic nanochains were synthesized, and the impact of their shape anisotropy on cellular uptake was studied. Our findings reveal significant differences in the extent of their intracellular accumulation.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d2nr06965b</identifier><identifier>PMID: 37114487</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Accumulation ; Anisotropy ; Biocompatibility ; Inductively coupled plasma ; Magnetics ; Magnetite Nanoparticles ; Nanomaterials ; Nanoparticles ; Shape effects</subject><ispartof>Nanoscale, 2023-05, Vol.15 (19), p.8611-8618</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-9171babf16b4edf56dfb52d6a2c7019adffd03f92e6dcd474500cfd3ab4d6b423</citedby><cites>FETCH-LOGICAL-c373t-9171babf16b4edf56dfb52d6a2c7019adffd03f92e6dcd474500cfd3ab4d6b423</cites><orcidid>0000-0002-9403-8274</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37114487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Potr, Tanja</creatorcontrib><creatorcontrib>Kralj, Slavko</creatorcontrib><creatorcontrib>Nemec, Sebastjan</creatorcontrib><creatorcontrib>Kocbek, Petra</creatorcontrib><creatorcontrib>Erdani Kreft, Mateja</creatorcontrib><title>The shape anisotropy of magnetic nanoparticles: an approach to cell-type selective and enhanced internalization</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>The effects of the shape anisotropy of nanoparticles on cellular uptake is still poorly understood due to challenges in the synthesis of anisotropic magnetic nanoparticles of the same composition. Here, we design and synthesize spherical magnetic nanoparticles and their anisotropic assemblies, namely magnetic nanochains (length ∼800 nm). Then, nanoparticle shape anisotropy is investigated on urothelial cells in vitro . Although both shapes of nanomaterials reveal biocompatibility, we havefound significant differences in the extent of their intracellular accumulation. Contrary to spherical particles, anisotropic nanochains preferentially accumulate in cancer cells as confirmed by inductively coupled plasma (ICP) analysis, indicating that control of the nanoparticle shape geometry governs cell-type-selective intracellular uptake and accumulation. Spherical nanoparticles and anisotropic magnetic nanochains were synthesized, and the impact of their shape anisotropy on cellular uptake was studied. Our findings reveal significant differences in the extent of their intracellular accumulation.</description><subject>Accumulation</subject><subject>Anisotropy</subject><subject>Biocompatibility</subject><subject>Inductively coupled plasma</subject><subject>Magnetics</subject><subject>Magnetite Nanoparticles</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Shape effects</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0d9LHDEQB_BQWtRaX_reEuiLFLbNr93c-mZttYJUKPZ5mU0mvZW9ZE1ywvnXm_X0Cn2agXxmGPIl5D1nXziT7VcrfGRN29T9K3IgmGKVlFq83vWN2idvU7plBclG7pF9qTlXaqEPSLhZIk1LmJCCH1LIMUwbGhxdwV-PeTDUgw8TxNKOmE6KojBNMYBZ0hyowXGs8qaMJxzR5OF-XmQp-iV4g5YOPmP0MA4PkIfg35E3DsaER8_1kPw5_3Fz9rO6ur64PDu9qozUMlct17yH3vGmV2hd3VjX18I2IIxmvAXrnGXStQIba6zSqmbMOCuhV7aMCHlIjrd7y6l3a0y5Ww1pPhY8hnXqxILpVqhSCv30H70N6_nkWXG1kDVTuqjPW2ViSCmi66Y4rCBuOs66OYbuu_j1-ymGbwV_fF657ldod_Tl3wv4sAUxmd3rvxzlI7tIjqU</recordid><startdate>20230518</startdate><enddate>20230518</enddate><creator>Potr, Tanja</creator><creator>Kralj, Slavko</creator><creator>Nemec, Sebastjan</creator><creator>Kocbek, Petra</creator><creator>Erdani Kreft, Mateja</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9403-8274</orcidid></search><sort><creationdate>20230518</creationdate><title>The shape anisotropy of magnetic nanoparticles: an approach to cell-type selective and enhanced internalization</title><author>Potr, Tanja ; Kralj, Slavko ; Nemec, Sebastjan ; Kocbek, Petra ; Erdani Kreft, Mateja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-9171babf16b4edf56dfb52d6a2c7019adffd03f92e6dcd474500cfd3ab4d6b423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accumulation</topic><topic>Anisotropy</topic><topic>Biocompatibility</topic><topic>Inductively coupled plasma</topic><topic>Magnetics</topic><topic>Magnetite Nanoparticles</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Shape effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Potr, Tanja</creatorcontrib><creatorcontrib>Kralj, Slavko</creatorcontrib><creatorcontrib>Nemec, Sebastjan</creatorcontrib><creatorcontrib>Kocbek, Petra</creatorcontrib><creatorcontrib>Erdani Kreft, Mateja</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Potr, Tanja</au><au>Kralj, Slavko</au><au>Nemec, Sebastjan</au><au>Kocbek, Petra</au><au>Erdani Kreft, Mateja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The shape anisotropy of magnetic nanoparticles: an approach to cell-type selective and enhanced internalization</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2023-05-18</date><risdate>2023</risdate><volume>15</volume><issue>19</issue><spage>8611</spage><epage>8618</epage><pages>8611-8618</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The effects of the shape anisotropy of nanoparticles on cellular uptake is still poorly understood due to challenges in the synthesis of anisotropic magnetic nanoparticles of the same composition. Here, we design and synthesize spherical magnetic nanoparticles and their anisotropic assemblies, namely magnetic nanochains (length ∼800 nm). Then, nanoparticle shape anisotropy is investigated on urothelial cells in vitro . Although both shapes of nanomaterials reveal biocompatibility, we havefound significant differences in the extent of their intracellular accumulation. Contrary to spherical particles, anisotropic nanochains preferentially accumulate in cancer cells as confirmed by inductively coupled plasma (ICP) analysis, indicating that control of the nanoparticle shape geometry governs cell-type-selective intracellular uptake and accumulation. Spherical nanoparticles and anisotropic magnetic nanochains were synthesized, and the impact of their shape anisotropy on cellular uptake was studied. Our findings reveal significant differences in the extent of their intracellular accumulation.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37114487</pmid><doi>10.1039/d2nr06965b</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9403-8274</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2023-05, Vol.15 (19), p.8611-8618
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_2807924280
source Royal Society of Chemistry
subjects Accumulation
Anisotropy
Biocompatibility
Inductively coupled plasma
Magnetics
Magnetite Nanoparticles
Nanomaterials
Nanoparticles
Shape effects
title The shape anisotropy of magnetic nanoparticles: an approach to cell-type selective and enhanced internalization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A20%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20shape%20anisotropy%20of%20magnetic%20nanoparticles:%20an%20approach%20to%20cell-type%20selective%20and%20enhanced%20internalization&rft.jtitle=Nanoscale&rft.au=Potr,%20Tanja&rft.date=2023-05-18&rft.volume=15&rft.issue=19&rft.spage=8611&rft.epage=8618&rft.pages=8611-8618&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d2nr06965b&rft_dat=%3Cproquest_cross%3E2807924280%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-9171babf16b4edf56dfb52d6a2c7019adffd03f92e6dcd474500cfd3ab4d6b423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2814835047&rft_id=info:pmid/37114487&rfr_iscdi=true