Loading…

Ergothioneine improves myocardial remodeling and heart function after acute myocardial infarction via S-glutathionylation through the NF-ĸB dependent Wnt5a-sFlt-1 pathway

Myocardial infarction (MI) remains the leading cause of cardiovascular death worldwide. Studies have shown that soluble fms-like tyrosine kinase-1 (sFlt-1) has a harmful effect on the heart after MI. However, ergothioneine (ERG) has been shown to have protective effects in rats with preeclampsia by...

Full description

Saved in:
Bibliographic Details
Published in:European journal of pharmacology 2023-07, Vol.950, p.175759-175759, Article 175759
Main Authors: Duan, Rui, Pan, Haotian, Li, DongCheng, Liao, Shengen, Han, Bing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Myocardial infarction (MI) remains the leading cause of cardiovascular death worldwide. Studies have shown that soluble fms-like tyrosine kinase-1 (sFlt-1) has a harmful effect on the heart after MI. However, ergothioneine (ERG) has been shown to have protective effects in rats with preeclampsia by reducing circulating levels of sFlt-1. In this study, we aimed to investigate the mechanism by which ERG protects the heart after MI in rats. Our results indicate that treatment with 10 mg/kg ERG for 7 days can improve cardiac function as determined by echocardiography. Additionally, ERG can reduce the size of the damaged area, prevent heart remodeling, fibrosis, and reduce cardiomyocyte death after MI. To explain the mechanism behind the cardioprotective effects of ERG, we conducted several experiments. We observed a significant reduction in the expression of monocyte chemoattractant protein-1 (MCP-1), p65, and p-p65 proteins in heart tissues of ERG-treated rats compared to the control group. ELISA results also showed that ERG significantly reduced plasma levels of sFlt-1. Using Glutaredoxin-1 (GLRX) and CD31 immunofluorescence, we found that GLRX was expressed in clusters in the myocardial tissue surrounding the coronary artery, and ERG can reduce the expression of GLRX caused by MI. In vitro experiments using a human coronary artery endothelial cell (HCAEC) hypoxia model confirmed that ERG can reduce the expression of sFlt-1, GLRX, and Wnt5a. These findings suggest that ERG protects the heart from MI damage by reducing s-glutathionylation through the NF-ĸB-dependent Wnt5a-sFlt-1 pathway.
ISSN:0014-2999
1879-0712
DOI:10.1016/j.ejphar.2023.175759