Loading…

Comparison of different experimental techniques for determination of elastic properties of solids

Four different experimental techniques, namely resonant ultrasound spectroscopy (RUS), impulse excitation (IE), nanoindentation (NI) and four-point bending (4PB) test were used to determine the Young’s and shear moduli of 99.9% pure Al 2O 3, 7075 aluminum, 4140 steel and Pyrex glass. The results fro...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2004-03, Vol.368 (1), p.56-70
Main Authors: Radovic, M., Lara-Curzio, E., Riester, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Four different experimental techniques, namely resonant ultrasound spectroscopy (RUS), impulse excitation (IE), nanoindentation (NI) and four-point bending (4PB) test were used to determine the Young’s and shear moduli of 99.9% pure Al 2O 3, 7075 aluminum, 4140 steel and Pyrex glass. The results from the different tests are compared and statistically analyzed to determine the precision of each method and to estimate the significance of the differences among the four techniques. It was found that dynamic methods (RUS and IE) have superior precision and repeatability when compared to NI and 4PB for all four tested materials. It was also found that the differences between results of RUS and IE are not statistically significant, and that NI can be equally successfully used for determining Young’s modulus of well-prepared, microstructurally homogenous and relatively hard materials. 4PB was found to have the lowest precision and repeatability among the four test methods.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2003.09.080