Loading…

Experimental study of fuel decomposition and hydrocarbon growth processes for practical fuel components: heptanes

C1 to C12 stable hydrocarbons, soot volume fraction, major species, and gas temperature have been measured in a series of methane/air coflowing nonpremixed flames whose fuel was separately doped with 5000 ppm of five heptane isomers. The temperatures, residence times, major species concentrations, a...

Full description

Saved in:
Bibliographic Details
Published in:Combustion and flame 2003-09, Vol.134 (4), p.339-353
Main Authors: McEnally, Charles S, Ciuparu, Dragos M, Pfefferle, Lisa D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-e51d8a94fcb078e2065f8e798168726b7acc74fffdb31c53efeeda58c6cb924f3
cites cdi_FETCH-LOGICAL-c409t-e51d8a94fcb078e2065f8e798168726b7acc74fffdb31c53efeeda58c6cb924f3
container_end_page 353
container_issue 4
container_start_page 339
container_title Combustion and flame
container_volume 134
creator McEnally, Charles S
Ciuparu, Dragos M
Pfefferle, Lisa D
description C1 to C12 stable hydrocarbons, soot volume fraction, major species, and gas temperature have been measured in a series of methane/air coflowing nonpremixed flames whose fuel was separately doped with 5000 ppm of five heptane isomers. The temperatures, residence times, major species concentrations, and heptane consumption rates were similar in each flame, so the large differences in hydrocarbon product concentrations result from the direct chemical effects of the heptanes. The heptanes increased the maximum soot volume fraction in the order trimethylbutane > dimethypentanes > n-heptane, which is also the order of increasing number of branches. The species measurements indicated that this occurred because the more-branched heptanes produced more propene and butene and less ethylene, and therefore formed more propargyl radical through dehydrogenation or H-abstraction/β scission pathways. The results are a useful database for testing detailed chemical kinetic mechanisms of fuel decomposition and hydrocarbon growth from large alkanes.
doi_str_mv 10.1016/S0010-2180(03)00113-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28082236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218003001135</els_id><sourcerecordid>28082236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-e51d8a94fcb078e2065f8e798168726b7acc74fffdb31c53efeeda58c6cb924f3</originalsourceid><addsrcrecordid>eNqFUEtP3DAQtqoidQv9CZV8aVUOKX7EicMFVYg-JCQOtGfLscesUTYOHm_p_nvMLmqPPY2-0feY-Qh5z9lnznh3dssYZ43gmn1i8rQCLhv1iqy4Ul0jBsFfk9VfyhvyFvGeMda3Uq7Iw9WfBXLcwFzsRLFs_Y6mQMMWJurBpc2SMJaYZmpnT9c7n5Ozeaz4LqfHsqZLXQAiIA0pV2Rdia5a7R32-rl64zldw1LsDHhCjoKdEN69zGPy6-vVz8vvzfXNtx-XX64b17KhNKC413ZogxtZr0GwTgUN_aB5p3vRjb11rm9DCH6U3CkJAcBbpV3nxkG0QR6TjwffeuHDFrCYTUQH01SPSFs0QjMthOwqUR2ILifEDMEstRCbd4Yz81yw2RdsntszTJp9wUZV3YeXAIv145Dt7CL-Eyuua4CuvIsDD-q3vyNkgy7C7MDHDK4Yn-J_kp4A0aOS1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28082236</pqid></control><display><type>article</type><title>Experimental study of fuel decomposition and hydrocarbon growth processes for practical fuel components: heptanes</title><source>ScienceDirect Journals</source><creator>McEnally, Charles S ; Ciuparu, Dragos M ; Pfefferle, Lisa D</creator><creatorcontrib>McEnally, Charles S ; Ciuparu, Dragos M ; Pfefferle, Lisa D</creatorcontrib><description>C1 to C12 stable hydrocarbons, soot volume fraction, major species, and gas temperature have been measured in a series of methane/air coflowing nonpremixed flames whose fuel was separately doped with 5000 ppm of five heptane isomers. The temperatures, residence times, major species concentrations, and heptane consumption rates were similar in each flame, so the large differences in hydrocarbon product concentrations result from the direct chemical effects of the heptanes. The heptanes increased the maximum soot volume fraction in the order trimethylbutane &gt; dimethypentanes &gt; n-heptane, which is also the order of increasing number of branches. The species measurements indicated that this occurred because the more-branched heptanes produced more propene and butene and less ethylene, and therefore formed more propargyl radical through dehydrogenation or H-abstraction/β scission pathways. The results are a useful database for testing detailed chemical kinetic mechanisms of fuel decomposition and hydrocarbon growth from large alkanes.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/S0010-2180(03)00113-5</identifier><identifier>CODEN: CBFMAO</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Applied sciences ; Burners ; Combustion of gaseous fuels ; Combustion. Flame ; Diffusion flames ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Inorganics and soot pollutants ; Theoretical studies. Data and constants. Metering</subject><ispartof>Combustion and flame, 2003-09, Vol.134 (4), p.339-353</ispartof><rights>2003 The Combustion Institute</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-e51d8a94fcb078e2065f8e798168726b7acc74fffdb31c53efeeda58c6cb924f3</citedby><cites>FETCH-LOGICAL-c409t-e51d8a94fcb078e2065f8e798168726b7acc74fffdb31c53efeeda58c6cb924f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15188228$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>McEnally, Charles S</creatorcontrib><creatorcontrib>Ciuparu, Dragos M</creatorcontrib><creatorcontrib>Pfefferle, Lisa D</creatorcontrib><title>Experimental study of fuel decomposition and hydrocarbon growth processes for practical fuel components: heptanes</title><title>Combustion and flame</title><description>C1 to C12 stable hydrocarbons, soot volume fraction, major species, and gas temperature have been measured in a series of methane/air coflowing nonpremixed flames whose fuel was separately doped with 5000 ppm of five heptane isomers. The temperatures, residence times, major species concentrations, and heptane consumption rates were similar in each flame, so the large differences in hydrocarbon product concentrations result from the direct chemical effects of the heptanes. The heptanes increased the maximum soot volume fraction in the order trimethylbutane &gt; dimethypentanes &gt; n-heptane, which is also the order of increasing number of branches. The species measurements indicated that this occurred because the more-branched heptanes produced more propene and butene and less ethylene, and therefore formed more propargyl radical through dehydrogenation or H-abstraction/β scission pathways. The results are a useful database for testing detailed chemical kinetic mechanisms of fuel decomposition and hydrocarbon growth from large alkanes.</description><subject>Applied sciences</subject><subject>Burners</subject><subject>Combustion of gaseous fuels</subject><subject>Combustion. Flame</subject><subject>Diffusion flames</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Inorganics and soot pollutants</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFUEtP3DAQtqoidQv9CZV8aVUOKX7EicMFVYg-JCQOtGfLscesUTYOHm_p_nvMLmqPPY2-0feY-Qh5z9lnznh3dssYZ43gmn1i8rQCLhv1iqy4Ul0jBsFfk9VfyhvyFvGeMda3Uq7Iw9WfBXLcwFzsRLFs_Y6mQMMWJurBpc2SMJaYZmpnT9c7n5Ozeaz4LqfHsqZLXQAiIA0pV2Rdia5a7R32-rl64zldw1LsDHhCjoKdEN69zGPy6-vVz8vvzfXNtx-XX64b17KhNKC413ZogxtZr0GwTgUN_aB5p3vRjb11rm9DCH6U3CkJAcBbpV3nxkG0QR6TjwffeuHDFrCYTUQH01SPSFs0QjMthOwqUR2ILifEDMEstRCbd4Yz81yw2RdsntszTJp9wUZV3YeXAIv145Dt7CL-Eyuua4CuvIsDD-q3vyNkgy7C7MDHDK4Yn-J_kp4A0aOS1A</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>McEnally, Charles S</creator><creator>Ciuparu, Dragos M</creator><creator>Pfefferle, Lisa D</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20030901</creationdate><title>Experimental study of fuel decomposition and hydrocarbon growth processes for practical fuel components: heptanes</title><author>McEnally, Charles S ; Ciuparu, Dragos M ; Pfefferle, Lisa D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-e51d8a94fcb078e2065f8e798168726b7acc74fffdb31c53efeeda58c6cb924f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Burners</topic><topic>Combustion of gaseous fuels</topic><topic>Combustion. Flame</topic><topic>Diffusion flames</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Inorganics and soot pollutants</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McEnally, Charles S</creatorcontrib><creatorcontrib>Ciuparu, Dragos M</creatorcontrib><creatorcontrib>Pfefferle, Lisa D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McEnally, Charles S</au><au>Ciuparu, Dragos M</au><au>Pfefferle, Lisa D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental study of fuel decomposition and hydrocarbon growth processes for practical fuel components: heptanes</atitle><jtitle>Combustion and flame</jtitle><date>2003-09-01</date><risdate>2003</risdate><volume>134</volume><issue>4</issue><spage>339</spage><epage>353</epage><pages>339-353</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><coden>CBFMAO</coden><abstract>C1 to C12 stable hydrocarbons, soot volume fraction, major species, and gas temperature have been measured in a series of methane/air coflowing nonpremixed flames whose fuel was separately doped with 5000 ppm of five heptane isomers. The temperatures, residence times, major species concentrations, and heptane consumption rates were similar in each flame, so the large differences in hydrocarbon product concentrations result from the direct chemical effects of the heptanes. The heptanes increased the maximum soot volume fraction in the order trimethylbutane &gt; dimethypentanes &gt; n-heptane, which is also the order of increasing number of branches. The species measurements indicated that this occurred because the more-branched heptanes produced more propene and butene and less ethylene, and therefore formed more propargyl radical through dehydrogenation or H-abstraction/β scission pathways. The results are a useful database for testing detailed chemical kinetic mechanisms of fuel decomposition and hydrocarbon growth from large alkanes.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/S0010-2180(03)00113-5</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-2180
ispartof Combustion and flame, 2003-09, Vol.134 (4), p.339-353
issn 0010-2180
1556-2921
language eng
recordid cdi_proquest_miscellaneous_28082236
source ScienceDirect Journals
subjects Applied sciences
Burners
Combustion of gaseous fuels
Combustion. Flame
Diffusion flames
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Inorganics and soot pollutants
Theoretical studies. Data and constants. Metering
title Experimental study of fuel decomposition and hydrocarbon growth processes for practical fuel components: heptanes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A30%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20study%20of%20fuel%20decomposition%20and%20hydrocarbon%20growth%20processes%20for%20practical%20fuel%20components:%20heptanes&rft.jtitle=Combustion%20and%20flame&rft.au=McEnally,%20Charles%20S&rft.date=2003-09-01&rft.volume=134&rft.issue=4&rft.spage=339&rft.epage=353&rft.pages=339-353&rft.issn=0010-2180&rft.eissn=1556-2921&rft.coden=CBFMAO&rft_id=info:doi/10.1016/S0010-2180(03)00113-5&rft_dat=%3Cproquest_cross%3E28082236%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-e51d8a94fcb078e2065f8e798168726b7acc74fffdb31c53efeeda58c6cb924f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28082236&rft_id=info:pmid/&rfr_iscdi=true