Loading…

Scan impedance of RSW microstrip antennas in a finite array

Scan impedances of finite reduced surface wave (RSW) arrays are studied. Center element scan impedances of linear arrays and two-dimensional (2-D) square lattice arrays are calculated and compared with those of conventional microstrip arrays. Results show that compared with conventional microstrip a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation 2005-03, Vol.53 (3), p.1098-1104
Main Authors: Chen, R.L., Jackson, D.R., Williams, J.T., Long, S.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Scan impedances of finite reduced surface wave (RSW) arrays are studied. Center element scan impedances of linear arrays and two-dimensional (2-D) square lattice arrays are calculated and compared with those of conventional microstrip arrays. Results show that compared with conventional microstrip arrays, broadside scan impedance of RSW arrays has less variation and converges much faster when the array size increases. Scan performance of the linear and 2-D square lattice RSW arrays are also studied. Results show that the RSW array can avoid the scan blindness (when the array spacing is greater than 0.5/spl lambda//sub 0/) and the scan impedance has much less variation than that of conventional microstrip array with the same array spacing. However, due to the size limitation of RSW elements, the grating lobes cannot be avoided. Hence, the scan region is limited to about 20/spl deg/ (with 0.75/spl lambda//sub 0/ array spacing). Compared with conventional microstrip arrays with 0.5/spl lambda//sub 0/ array spacing, the results show no favor to RSW arrays.
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2004.842657