Loading…
Using silicon nanostructures for the improvement of silicon solar cells' efficiency
Silicon nanostructures (ns-Si) show interesting optical and electrical properties as a result of the band gap widening caused by quantum confinement effects. Along with their potential utilization for silicon-based light emitters' fabrication, they could also represent an appealing option for t...
Saved in:
Published in: | Thin solid films 2006-07, Vol.511 (Complete), p.163-166 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Silicon nanostructures (ns-Si) show interesting optical and electrical properties as a result of the band gap widening caused by quantum confinement effects. Along with their potential utilization for silicon-based light emitters' fabrication, they could also represent an appealing option for the improvement of energy conversion efficiency in silicon-based solar cells whether by using their luminescence properties (photon down-conversion) or the excess photocurrent produced by an improved high-energy photon's absorption. In this work, we report on the morphological and optical studies of non-stoichiometric silica (SiO
x
) and silicon nitride (SiN
x
) layers containing silicon nanostructures (ns-Si) in view of their application for solar cell's efficiency improvement. The morphological studies of the samples performed by transmission electron microscopy (TEM) unambiguously show the presence of ns-Si in a crystalline form for high temperature-annealed SiO
x
layers and for low temperature deposition of SiN
x
layers. The photoluminescence emission (PL) shows a rather high efficiency in both kind of layers with an intensity of only a factor ∼
100 lower than that of porous silicon (pi-Si). The photocurrent spectroscopy (PC) shows a significant increase of absorption at high photon energy excitation most probably related to photon absorption within ns-Si quantized states. Moreover, the absorption characteristics obtained from PC spectra show a good agreement with the PL emission states unambiguously demonstrating a same origin, related to Q-confined excitons within ns-Si. Finally, the major asset of this material is the possibility to incorporate it to solar cells manufacturing processing for an insignificant cost. |
---|---|
ISSN: | 0040-6090 1879-2731 |
DOI: | 10.1016/j.tsf.2005.12.008 |