Loading…

Bacterial repellence from polyethylene terephthalate surface modified by acetylene plasma immersion ion implantation–deposition

There is an increasing interest in developing new methods to reduce bacterial adhesion onto polymeric materials used in biomedical implants. The antibacterial adsorption behavior on polyethylene terephthalate (PET) treated by plasma immersion ion implantation–deposition (PIII–D) using acetylene (C 2...

Full description

Saved in:
Bibliographic Details
Published in:Surface & coatings technology 2004-08, Vol.186 (1), p.299-304
Main Authors: Wang, J, Huang, N, Pan, C.J, Kwok, S.C.H, Yang, P, Leng, Y.X, Chen, J.Y, Sun, H, Wan, G.J, Liu, Z.Y, Chu, P.K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c446t-d2d4b1df03d20be568c9bbbe449ac02bebc029bf4dc7c7267de52ad8714a4ad3
cites cdi_FETCH-LOGICAL-c446t-d2d4b1df03d20be568c9bbbe449ac02bebc029bf4dc7c7267de52ad8714a4ad3
container_end_page 304
container_issue 1
container_start_page 299
container_title Surface & coatings technology
container_volume 186
creator Wang, J
Huang, N
Pan, C.J
Kwok, S.C.H
Yang, P
Leng, Y.X
Chen, J.Y
Sun, H
Wan, G.J
Liu, Z.Y
Chu, P.K
description There is an increasing interest in developing new methods to reduce bacterial adhesion onto polymeric materials used in biomedical implants. The antibacterial adsorption behavior on polyethylene terephthalate (PET) treated by plasma immersion ion implantation–deposition (PIII–D) using acetylene (C 2H 2) at different working pressures is investigated . The surface structure of the treated PET is determined by Rutherford backscattering spectrometry (RBS), laser Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The results show the formation of thin hydrogenated amorphous carbon (a-C:H) films with different structures and chemical bonds on the PET surface. The ability of Staphylococcus aureus (SA) and Staphylococcus epidermidis (SE) to adhere to PET is quantitatively determined by plate counting and Gamma-ray counting of the 125I-labeled bacteria in vitro. The adhesion efficiency of SA on the a-C:H film deposited at 0.5 Pa of working pressure is about 16% of that on the untreated PET surface, and the adhered bacterial concentration of SE on the carbon film deposited at 1.0 Pa is about 1/6 of that of the PET surface. Bacterial adhesion onto a-C:H films is influenced by the structures and chemical bonds of the materials. The reduction in bacterial adhesion can be explained by the free energy of adhesion (Δ F Adh), which predicts whether microbial adhesion is energetically favorable (Δ F Adh0). Our results show that bacterial adhesion is energetically unfavorable on the a-C:H films deposited at 0.5 and 1.0 Pa, and this study suggests one possible method to repel bacteria from polymeric surfaces.
doi_str_mv 10.1016/j.surfcoat.2004.02.046
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28093969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897204002889</els_id><sourcerecordid>28093969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-d2d4b1df03d20be568c9bbbe449ac02bebc029bf4dc7c7267de52ad8714a4ad3</originalsourceid><addsrcrecordid>eNqFkEtOwzAQhi0EEqVwBeQVuwTHceN4x0O8JCQ23Vt-TFRXSR1sF6k7OAM35CQ4FNYsbOsffTPWfAidV6SsSNVcrsu4DZ3xKpWUEFYSWhLWHKBZ1XJR1DXjh2hG6IIXreD0GJ3EuCaEVFywGfq4USZBcKrHAUboe9gYwF3wAx59v4O02uUS4MzAuEor1asEePpQZW7w1nUOLNY7nHPas2Ov4qCwGwYI0fkN_jlDLm-SSjl8vX9aGH10UzhFR53qI5z9vnO0vL9b3j4Wzy8PT7fXz4VhrEmFpZbpynaktpRoWDStEVprYEwoQ6gGnW-hO2YNN5w23MKCKtvyiimmbD1HF_uxY_CvW4hJDi6avLDagN9GSVsiatGIDDZ70AQfY4BOjsENKuxkReQkXK7ln3A5CZeEyiw8N17tGyFv8eYgyGjcpNO6ACZJ691_I74BLhGUWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28093969</pqid></control><display><type>article</type><title>Bacterial repellence from polyethylene terephthalate surface modified by acetylene plasma immersion ion implantation–deposition</title><source>Elsevier</source><creator>Wang, J ; Huang, N ; Pan, C.J ; Kwok, S.C.H ; Yang, P ; Leng, Y.X ; Chen, J.Y ; Sun, H ; Wan, G.J ; Liu, Z.Y ; Chu, P.K</creator><creatorcontrib>Wang, J ; Huang, N ; Pan, C.J ; Kwok, S.C.H ; Yang, P ; Leng, Y.X ; Chen, J.Y ; Sun, H ; Wan, G.J ; Liu, Z.Y ; Chu, P.K</creatorcontrib><description>There is an increasing interest in developing new methods to reduce bacterial adhesion onto polymeric materials used in biomedical implants. The antibacterial adsorption behavior on polyethylene terephthalate (PET) treated by plasma immersion ion implantation–deposition (PIII–D) using acetylene (C 2H 2) at different working pressures is investigated . The surface structure of the treated PET is determined by Rutherford backscattering spectrometry (RBS), laser Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The results show the formation of thin hydrogenated amorphous carbon (a-C:H) films with different structures and chemical bonds on the PET surface. The ability of Staphylococcus aureus (SA) and Staphylococcus epidermidis (SE) to adhere to PET is quantitatively determined by plate counting and Gamma-ray counting of the 125I-labeled bacteria in vitro. The adhesion efficiency of SA on the a-C:H film deposited at 0.5 Pa of working pressure is about 16% of that on the untreated PET surface, and the adhered bacterial concentration of SE on the carbon film deposited at 1.0 Pa is about 1/6 of that of the PET surface. Bacterial adhesion onto a-C:H films is influenced by the structures and chemical bonds of the materials. The reduction in bacterial adhesion can be explained by the free energy of adhesion (Δ F Adh), which predicts whether microbial adhesion is energetically favorable (Δ F Adh&lt;0) or not (Δ F Adh&gt;0). Our results show that bacterial adhesion is energetically unfavorable on the a-C:H films deposited at 0.5 and 1.0 Pa, and this study suggests one possible method to repel bacteria from polymeric surfaces.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2004.02.046</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bacterial adhesion ; Hydrogenated amorphous carbon (a-C:H) ; Plasma immersion ion implantation ; Polyethylene terephthalate (PET)</subject><ispartof>Surface &amp; coatings technology, 2004-08, Vol.186 (1), p.299-304</ispartof><rights>2004 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-d2d4b1df03d20be568c9bbbe449ac02bebc029bf4dc7c7267de52ad8714a4ad3</citedby><cites>FETCH-LOGICAL-c446t-d2d4b1df03d20be568c9bbbe449ac02bebc029bf4dc7c7267de52ad8714a4ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, J</creatorcontrib><creatorcontrib>Huang, N</creatorcontrib><creatorcontrib>Pan, C.J</creatorcontrib><creatorcontrib>Kwok, S.C.H</creatorcontrib><creatorcontrib>Yang, P</creatorcontrib><creatorcontrib>Leng, Y.X</creatorcontrib><creatorcontrib>Chen, J.Y</creatorcontrib><creatorcontrib>Sun, H</creatorcontrib><creatorcontrib>Wan, G.J</creatorcontrib><creatorcontrib>Liu, Z.Y</creatorcontrib><creatorcontrib>Chu, P.K</creatorcontrib><title>Bacterial repellence from polyethylene terephthalate surface modified by acetylene plasma immersion ion implantation–deposition</title><title>Surface &amp; coatings technology</title><description>There is an increasing interest in developing new methods to reduce bacterial adhesion onto polymeric materials used in biomedical implants. The antibacterial adsorption behavior on polyethylene terephthalate (PET) treated by plasma immersion ion implantation–deposition (PIII–D) using acetylene (C 2H 2) at different working pressures is investigated . The surface structure of the treated PET is determined by Rutherford backscattering spectrometry (RBS), laser Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The results show the formation of thin hydrogenated amorphous carbon (a-C:H) films with different structures and chemical bonds on the PET surface. The ability of Staphylococcus aureus (SA) and Staphylococcus epidermidis (SE) to adhere to PET is quantitatively determined by plate counting and Gamma-ray counting of the 125I-labeled bacteria in vitro. The adhesion efficiency of SA on the a-C:H film deposited at 0.5 Pa of working pressure is about 16% of that on the untreated PET surface, and the adhered bacterial concentration of SE on the carbon film deposited at 1.0 Pa is about 1/6 of that of the PET surface. Bacterial adhesion onto a-C:H films is influenced by the structures and chemical bonds of the materials. The reduction in bacterial adhesion can be explained by the free energy of adhesion (Δ F Adh), which predicts whether microbial adhesion is energetically favorable (Δ F Adh&lt;0) or not (Δ F Adh&gt;0). Our results show that bacterial adhesion is energetically unfavorable on the a-C:H films deposited at 0.5 and 1.0 Pa, and this study suggests one possible method to repel bacteria from polymeric surfaces.</description><subject>Bacterial adhesion</subject><subject>Hydrogenated amorphous carbon (a-C:H)</subject><subject>Plasma immersion ion implantation</subject><subject>Polyethylene terephthalate (PET)</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkEtOwzAQhi0EEqVwBeQVuwTHceN4x0O8JCQ23Vt-TFRXSR1sF6k7OAM35CQ4FNYsbOsffTPWfAidV6SsSNVcrsu4DZ3xKpWUEFYSWhLWHKBZ1XJR1DXjh2hG6IIXreD0GJ3EuCaEVFywGfq4USZBcKrHAUboe9gYwF3wAx59v4O02uUS4MzAuEor1asEePpQZW7w1nUOLNY7nHPas2Ov4qCwGwYI0fkN_jlDLm-SSjl8vX9aGH10UzhFR53qI5z9vnO0vL9b3j4Wzy8PT7fXz4VhrEmFpZbpynaktpRoWDStEVprYEwoQ6gGnW-hO2YNN5w23MKCKtvyiimmbD1HF_uxY_CvW4hJDi6avLDagN9GSVsiatGIDDZ70AQfY4BOjsENKuxkReQkXK7ln3A5CZeEyiw8N17tGyFv8eYgyGjcpNO6ACZJ691_I74BLhGUWg</recordid><startdate>20040802</startdate><enddate>20040802</enddate><creator>Wang, J</creator><creator>Huang, N</creator><creator>Pan, C.J</creator><creator>Kwok, S.C.H</creator><creator>Yang, P</creator><creator>Leng, Y.X</creator><creator>Chen, J.Y</creator><creator>Sun, H</creator><creator>Wan, G.J</creator><creator>Liu, Z.Y</creator><creator>Chu, P.K</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20040802</creationdate><title>Bacterial repellence from polyethylene terephthalate surface modified by acetylene plasma immersion ion implantation–deposition</title><author>Wang, J ; Huang, N ; Pan, C.J ; Kwok, S.C.H ; Yang, P ; Leng, Y.X ; Chen, J.Y ; Sun, H ; Wan, G.J ; Liu, Z.Y ; Chu, P.K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-d2d4b1df03d20be568c9bbbe449ac02bebc029bf4dc7c7267de52ad8714a4ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Bacterial adhesion</topic><topic>Hydrogenated amorphous carbon (a-C:H)</topic><topic>Plasma immersion ion implantation</topic><topic>Polyethylene terephthalate (PET)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, J</creatorcontrib><creatorcontrib>Huang, N</creatorcontrib><creatorcontrib>Pan, C.J</creatorcontrib><creatorcontrib>Kwok, S.C.H</creatorcontrib><creatorcontrib>Yang, P</creatorcontrib><creatorcontrib>Leng, Y.X</creatorcontrib><creatorcontrib>Chen, J.Y</creatorcontrib><creatorcontrib>Sun, H</creatorcontrib><creatorcontrib>Wan, G.J</creatorcontrib><creatorcontrib>Liu, Z.Y</creatorcontrib><creatorcontrib>Chu, P.K</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, J</au><au>Huang, N</au><au>Pan, C.J</au><au>Kwok, S.C.H</au><au>Yang, P</au><au>Leng, Y.X</au><au>Chen, J.Y</au><au>Sun, H</au><au>Wan, G.J</au><au>Liu, Z.Y</au><au>Chu, P.K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial repellence from polyethylene terephthalate surface modified by acetylene plasma immersion ion implantation–deposition</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2004-08-02</date><risdate>2004</risdate><volume>186</volume><issue>1</issue><spage>299</spage><epage>304</epage><pages>299-304</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>There is an increasing interest in developing new methods to reduce bacterial adhesion onto polymeric materials used in biomedical implants. The antibacterial adsorption behavior on polyethylene terephthalate (PET) treated by plasma immersion ion implantation–deposition (PIII–D) using acetylene (C 2H 2) at different working pressures is investigated . The surface structure of the treated PET is determined by Rutherford backscattering spectrometry (RBS), laser Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The results show the formation of thin hydrogenated amorphous carbon (a-C:H) films with different structures and chemical bonds on the PET surface. The ability of Staphylococcus aureus (SA) and Staphylococcus epidermidis (SE) to adhere to PET is quantitatively determined by plate counting and Gamma-ray counting of the 125I-labeled bacteria in vitro. The adhesion efficiency of SA on the a-C:H film deposited at 0.5 Pa of working pressure is about 16% of that on the untreated PET surface, and the adhered bacterial concentration of SE on the carbon film deposited at 1.0 Pa is about 1/6 of that of the PET surface. Bacterial adhesion onto a-C:H films is influenced by the structures and chemical bonds of the materials. The reduction in bacterial adhesion can be explained by the free energy of adhesion (Δ F Adh), which predicts whether microbial adhesion is energetically favorable (Δ F Adh&lt;0) or not (Δ F Adh&gt;0). Our results show that bacterial adhesion is energetically unfavorable on the a-C:H films deposited at 0.5 and 1.0 Pa, and this study suggests one possible method to repel bacteria from polymeric surfaces.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2004.02.046</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2004-08, Vol.186 (1), p.299-304
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_miscellaneous_28093969
source Elsevier
subjects Bacterial adhesion
Hydrogenated amorphous carbon (a-C:H)
Plasma immersion ion implantation
Polyethylene terephthalate (PET)
title Bacterial repellence from polyethylene terephthalate surface modified by acetylene plasma immersion ion implantation–deposition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A16%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20repellence%20from%20polyethylene%20terephthalate%20surface%20modified%20by%20acetylene%20plasma%20immersion%20ion%20implantation%E2%80%93deposition&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Wang,%20J&rft.date=2004-08-02&rft.volume=186&rft.issue=1&rft.spage=299&rft.epage=304&rft.pages=299-304&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/10.1016/j.surfcoat.2004.02.046&rft_dat=%3Cproquest_cross%3E28093969%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-d2d4b1df03d20be568c9bbbe449ac02bebc029bf4dc7c7267de52ad8714a4ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28093969&rft_id=info:pmid/&rfr_iscdi=true