Loading…
Coagulation equations with mass loss
Models for coagulation with mass loss arising, for example, from industrial processes in which growing inclusions are lost from the melt by colliding with the wall of the vessel are derived and solved. A variety of loss laws and a variety of coagulation kernels are considered, exact results derived...
Saved in:
Published in: | Journal of engineering mathematics 2004-06, Vol.49 (2), p.113-131 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c374t-1184e803f891d863ef6e2a98906c857c3637595d8dfc9296e5b0e36f228c80433 |
---|---|
cites | |
container_end_page | 131 |
container_issue | 2 |
container_start_page | 113 |
container_title | Journal of engineering mathematics |
container_volume | 49 |
creator | WATTIS, Jonathan A. D MCCARTNEY, D. Graham GUDMUNDSSON, Throstur |
description | Models for coagulation with mass loss arising, for example, from industrial processes in which growing inclusions are lost from the melt by colliding with the wall of the vessel are derived and solved. A variety of loss laws and a variety of coagulation kernels are considered, exact results derived where possible, and more generally the equations are reduced and solved by similarity solutions valid in the large-time limit. One notable result is the effect that mass removal has on gelation: for small loss rates, gelation is delayed, whilst above a critical threshold, gelation is completely prevented. Finally, by forming an exact explicit solution for a more general initial clustersize distribution function, it is shown how numerical results from earlier work can be interpreted in the light of the theory presented herein. |
doi_str_mv | 10.1023/B:ENGI.0000017474.05829.68 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28100624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28100624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-1184e803f891d863ef6e2a98906c857c3637595d8dfc9296e5b0e36f228c80433</originalsourceid><addsrcrecordid>eNpFkE1PwzAMhiMEEmPwHyoE3Fqcb2c3No0xaYILnKOQJVDUrVvTCvHv6T6k-WIfHr-2HkJuKRQUGH8cj6avs3kBu6JaaFGARGYKhWdkQKXmOdPAz8kAgLEckPNLcpXST48bFGxA7ia1--oq15b1Ogvbbj-k7Ldsv7OVSymr6pSuyUV0VQo3xz4kH8_T98lLvnibzSdPi9xzLdqcUhQBgUc0dImKh6gCcwYNKI9Se664lkYucRm9YUYF-QmBq8gYegTB-ZA8HHI3Tb3tQmrtqkw-VJVbh7pLliEFUEz04OgA-qZ_rwnRbppy5Zo_S8HuxNix3YmxJzF2L8Yq7Jfvj1dc8q6KjVv7Mp0SpFRSCcn_AWupYgI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28100624</pqid></control><display><type>article</type><title>Coagulation equations with mass loss</title><source>Springer Link</source><creator>WATTIS, Jonathan A. D ; MCCARTNEY, D. Graham ; GUDMUNDSSON, Throstur</creator><creatorcontrib>WATTIS, Jonathan A. D ; MCCARTNEY, D. Graham ; GUDMUNDSSON, Throstur</creatorcontrib><description>Models for coagulation with mass loss arising, for example, from industrial processes in which growing inclusions are lost from the melt by colliding with the wall of the vessel are derived and solved. A variety of loss laws and a variety of coagulation kernels are considered, exact results derived where possible, and more generally the equations are reduced and solved by similarity solutions valid in the large-time limit. One notable result is the effect that mass removal has on gelation: for small loss rates, gelation is delayed, whilst above a critical threshold, gelation is completely prevented. Finally, by forming an exact explicit solution for a more general initial clustersize distribution function, it is shown how numerical results from earlier work can be interpreted in the light of the theory presented herein.</description><identifier>ISSN: 0022-0833</identifier><identifier>EISSN: 1573-2703</identifier><identifier>DOI: 10.1023/B:ENGI.0000017474.05829.68</identifier><identifier>CODEN: JLEMAU</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Applied sciences ; Exact sciences and technology ; Foundry engineering ; Metals. Metallurgy ; Other casting methods. Solidification ; Production techniques</subject><ispartof>Journal of engineering mathematics, 2004-06, Vol.49 (2), p.113-131</ispartof><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-1184e803f891d863ef6e2a98906c857c3637595d8dfc9296e5b0e36f228c80433</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15565645$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>WATTIS, Jonathan A. D</creatorcontrib><creatorcontrib>MCCARTNEY, D. Graham</creatorcontrib><creatorcontrib>GUDMUNDSSON, Throstur</creatorcontrib><title>Coagulation equations with mass loss</title><title>Journal of engineering mathematics</title><description>Models for coagulation with mass loss arising, for example, from industrial processes in which growing inclusions are lost from the melt by colliding with the wall of the vessel are derived and solved. A variety of loss laws and a variety of coagulation kernels are considered, exact results derived where possible, and more generally the equations are reduced and solved by similarity solutions valid in the large-time limit. One notable result is the effect that mass removal has on gelation: for small loss rates, gelation is delayed, whilst above a critical threshold, gelation is completely prevented. Finally, by forming an exact explicit solution for a more general initial clustersize distribution function, it is shown how numerical results from earlier work can be interpreted in the light of the theory presented herein.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Foundry engineering</subject><subject>Metals. Metallurgy</subject><subject>Other casting methods. Solidification</subject><subject>Production techniques</subject><issn>0022-0833</issn><issn>1573-2703</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpFkE1PwzAMhiMEEmPwHyoE3Fqcb2c3No0xaYILnKOQJVDUrVvTCvHv6T6k-WIfHr-2HkJuKRQUGH8cj6avs3kBu6JaaFGARGYKhWdkQKXmOdPAz8kAgLEckPNLcpXST48bFGxA7ia1--oq15b1Ogvbbj-k7Ldsv7OVSymr6pSuyUV0VQo3xz4kH8_T98lLvnibzSdPi9xzLdqcUhQBgUc0dImKh6gCcwYNKI9Se664lkYucRm9YUYF-QmBq8gYegTB-ZA8HHI3Tb3tQmrtqkw-VJVbh7pLliEFUEz04OgA-qZ_rwnRbppy5Zo_S8HuxNix3YmxJzF2L8Yq7Jfvj1dc8q6KjVv7Mp0SpFRSCcn_AWupYgI</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>WATTIS, Jonathan A. D</creator><creator>MCCARTNEY, D. Graham</creator><creator>GUDMUNDSSON, Throstur</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040601</creationdate><title>Coagulation equations with mass loss</title><author>WATTIS, Jonathan A. D ; MCCARTNEY, D. Graham ; GUDMUNDSSON, Throstur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-1184e803f891d863ef6e2a98906c857c3637595d8dfc9296e5b0e36f228c80433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Foundry engineering</topic><topic>Metals. Metallurgy</topic><topic>Other casting methods. Solidification</topic><topic>Production techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WATTIS, Jonathan A. D</creatorcontrib><creatorcontrib>MCCARTNEY, D. Graham</creatorcontrib><creatorcontrib>GUDMUNDSSON, Throstur</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of engineering mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WATTIS, Jonathan A. D</au><au>MCCARTNEY, D. Graham</au><au>GUDMUNDSSON, Throstur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coagulation equations with mass loss</atitle><jtitle>Journal of engineering mathematics</jtitle><date>2004-06-01</date><risdate>2004</risdate><volume>49</volume><issue>2</issue><spage>113</spage><epage>131</epage><pages>113-131</pages><issn>0022-0833</issn><eissn>1573-2703</eissn><coden>JLEMAU</coden><abstract>Models for coagulation with mass loss arising, for example, from industrial processes in which growing inclusions are lost from the melt by colliding with the wall of the vessel are derived and solved. A variety of loss laws and a variety of coagulation kernels are considered, exact results derived where possible, and more generally the equations are reduced and solved by similarity solutions valid in the large-time limit. One notable result is the effect that mass removal has on gelation: for small loss rates, gelation is delayed, whilst above a critical threshold, gelation is completely prevented. Finally, by forming an exact explicit solution for a more general initial clustersize distribution function, it is shown how numerical results from earlier work can be interpreted in the light of the theory presented herein.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1023/B:ENGI.0000017474.05829.68</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0833 |
ispartof | Journal of engineering mathematics, 2004-06, Vol.49 (2), p.113-131 |
issn | 0022-0833 1573-2703 |
language | eng |
recordid | cdi_proquest_miscellaneous_28100624 |
source | Springer Link |
subjects | Applied sciences Exact sciences and technology Foundry engineering Metals. Metallurgy Other casting methods. Solidification Production techniques |
title | Coagulation equations with mass loss |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A46%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coagulation%20equations%20with%20mass%20loss&rft.jtitle=Journal%20of%20engineering%20mathematics&rft.au=WATTIS,%20Jonathan%20A.%20D&rft.date=2004-06-01&rft.volume=49&rft.issue=2&rft.spage=113&rft.epage=131&rft.pages=113-131&rft.issn=0022-0833&rft.eissn=1573-2703&rft.coden=JLEMAU&rft_id=info:doi/10.1023/B:ENGI.0000017474.05829.68&rft_dat=%3Cproquest_cross%3E28100624%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c374t-1184e803f891d863ef6e2a98906c857c3637595d8dfc9296e5b0e36f228c80433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28100624&rft_id=info:pmid/&rfr_iscdi=true |