Loading…

Coagulation equations with mass loss

Models for coagulation with mass loss arising, for example, from industrial processes in which growing inclusions are lost from the melt by colliding with the wall of the vessel are derived and solved. A variety of loss laws and a variety of coagulation kernels are considered, exact results derived...

Full description

Saved in:
Bibliographic Details
Published in:Journal of engineering mathematics 2004-06, Vol.49 (2), p.113-131
Main Authors: WATTIS, Jonathan A. D, MCCARTNEY, D. Graham, GUDMUNDSSON, Throstur
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c374t-1184e803f891d863ef6e2a98906c857c3637595d8dfc9296e5b0e36f228c80433
cites
container_end_page 131
container_issue 2
container_start_page 113
container_title Journal of engineering mathematics
container_volume 49
creator WATTIS, Jonathan A. D
MCCARTNEY, D. Graham
GUDMUNDSSON, Throstur
description Models for coagulation with mass loss arising, for example, from industrial processes in which growing inclusions are lost from the melt by colliding with the wall of the vessel are derived and solved. A variety of loss laws and a variety of coagulation kernels are considered, exact results derived where possible, and more generally the equations are reduced and solved by similarity solutions valid in the large-time limit. One notable result is the effect that mass removal has on gelation: for small loss rates, gelation is delayed, whilst above a critical threshold, gelation is completely prevented. Finally, by forming an exact explicit solution for a more general initial clustersize distribution function, it is shown how numerical results from earlier work can be interpreted in the light of the theory presented herein.
doi_str_mv 10.1023/B:ENGI.0000017474.05829.68
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28100624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28100624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-1184e803f891d863ef6e2a98906c857c3637595d8dfc9296e5b0e36f228c80433</originalsourceid><addsrcrecordid>eNpFkE1PwzAMhiMEEmPwHyoE3Fqcb2c3No0xaYILnKOQJVDUrVvTCvHv6T6k-WIfHr-2HkJuKRQUGH8cj6avs3kBu6JaaFGARGYKhWdkQKXmOdPAz8kAgLEckPNLcpXST48bFGxA7ia1--oq15b1Ogvbbj-k7Ldsv7OVSymr6pSuyUV0VQo3xz4kH8_T98lLvnibzSdPi9xzLdqcUhQBgUc0dImKh6gCcwYNKI9Se664lkYucRm9YUYF-QmBq8gYegTB-ZA8HHI3Tb3tQmrtqkw-VJVbh7pLliEFUEz04OgA-qZ_rwnRbppy5Zo_S8HuxNix3YmxJzF2L8Yq7Jfvj1dc8q6KjVv7Mp0SpFRSCcn_AWupYgI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28100624</pqid></control><display><type>article</type><title>Coagulation equations with mass loss</title><source>Springer Link</source><creator>WATTIS, Jonathan A. D ; MCCARTNEY, D. Graham ; GUDMUNDSSON, Throstur</creator><creatorcontrib>WATTIS, Jonathan A. D ; MCCARTNEY, D. Graham ; GUDMUNDSSON, Throstur</creatorcontrib><description>Models for coagulation with mass loss arising, for example, from industrial processes in which growing inclusions are lost from the melt by colliding with the wall of the vessel are derived and solved. A variety of loss laws and a variety of coagulation kernels are considered, exact results derived where possible, and more generally the equations are reduced and solved by similarity solutions valid in the large-time limit. One notable result is the effect that mass removal has on gelation: for small loss rates, gelation is delayed, whilst above a critical threshold, gelation is completely prevented. Finally, by forming an exact explicit solution for a more general initial clustersize distribution function, it is shown how numerical results from earlier work can be interpreted in the light of the theory presented herein.</description><identifier>ISSN: 0022-0833</identifier><identifier>EISSN: 1573-2703</identifier><identifier>DOI: 10.1023/B:ENGI.0000017474.05829.68</identifier><identifier>CODEN: JLEMAU</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Applied sciences ; Exact sciences and technology ; Foundry engineering ; Metals. Metallurgy ; Other casting methods. Solidification ; Production techniques</subject><ispartof>Journal of engineering mathematics, 2004-06, Vol.49 (2), p.113-131</ispartof><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-1184e803f891d863ef6e2a98906c857c3637595d8dfc9296e5b0e36f228c80433</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15565645$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>WATTIS, Jonathan A. D</creatorcontrib><creatorcontrib>MCCARTNEY, D. Graham</creatorcontrib><creatorcontrib>GUDMUNDSSON, Throstur</creatorcontrib><title>Coagulation equations with mass loss</title><title>Journal of engineering mathematics</title><description>Models for coagulation with mass loss arising, for example, from industrial processes in which growing inclusions are lost from the melt by colliding with the wall of the vessel are derived and solved. A variety of loss laws and a variety of coagulation kernels are considered, exact results derived where possible, and more generally the equations are reduced and solved by similarity solutions valid in the large-time limit. One notable result is the effect that mass removal has on gelation: for small loss rates, gelation is delayed, whilst above a critical threshold, gelation is completely prevented. Finally, by forming an exact explicit solution for a more general initial clustersize distribution function, it is shown how numerical results from earlier work can be interpreted in the light of the theory presented herein.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Foundry engineering</subject><subject>Metals. Metallurgy</subject><subject>Other casting methods. Solidification</subject><subject>Production techniques</subject><issn>0022-0833</issn><issn>1573-2703</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpFkE1PwzAMhiMEEmPwHyoE3Fqcb2c3No0xaYILnKOQJVDUrVvTCvHv6T6k-WIfHr-2HkJuKRQUGH8cj6avs3kBu6JaaFGARGYKhWdkQKXmOdPAz8kAgLEckPNLcpXST48bFGxA7ia1--oq15b1Ogvbbj-k7Ldsv7OVSymr6pSuyUV0VQo3xz4kH8_T98lLvnibzSdPi9xzLdqcUhQBgUc0dImKh6gCcwYNKI9Se664lkYucRm9YUYF-QmBq8gYegTB-ZA8HHI3Tb3tQmrtqkw-VJVbh7pLliEFUEz04OgA-qZ_rwnRbppy5Zo_S8HuxNix3YmxJzF2L8Yq7Jfvj1dc8q6KjVv7Mp0SpFRSCcn_AWupYgI</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>WATTIS, Jonathan A. D</creator><creator>MCCARTNEY, D. Graham</creator><creator>GUDMUNDSSON, Throstur</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040601</creationdate><title>Coagulation equations with mass loss</title><author>WATTIS, Jonathan A. D ; MCCARTNEY, D. Graham ; GUDMUNDSSON, Throstur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-1184e803f891d863ef6e2a98906c857c3637595d8dfc9296e5b0e36f228c80433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Foundry engineering</topic><topic>Metals. Metallurgy</topic><topic>Other casting methods. Solidification</topic><topic>Production techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WATTIS, Jonathan A. D</creatorcontrib><creatorcontrib>MCCARTNEY, D. Graham</creatorcontrib><creatorcontrib>GUDMUNDSSON, Throstur</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of engineering mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WATTIS, Jonathan A. D</au><au>MCCARTNEY, D. Graham</au><au>GUDMUNDSSON, Throstur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coagulation equations with mass loss</atitle><jtitle>Journal of engineering mathematics</jtitle><date>2004-06-01</date><risdate>2004</risdate><volume>49</volume><issue>2</issue><spage>113</spage><epage>131</epage><pages>113-131</pages><issn>0022-0833</issn><eissn>1573-2703</eissn><coden>JLEMAU</coden><abstract>Models for coagulation with mass loss arising, for example, from industrial processes in which growing inclusions are lost from the melt by colliding with the wall of the vessel are derived and solved. A variety of loss laws and a variety of coagulation kernels are considered, exact results derived where possible, and more generally the equations are reduced and solved by similarity solutions valid in the large-time limit. One notable result is the effect that mass removal has on gelation: for small loss rates, gelation is delayed, whilst above a critical threshold, gelation is completely prevented. Finally, by forming an exact explicit solution for a more general initial clustersize distribution function, it is shown how numerical results from earlier work can be interpreted in the light of the theory presented herein.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1023/B:ENGI.0000017474.05829.68</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0833
ispartof Journal of engineering mathematics, 2004-06, Vol.49 (2), p.113-131
issn 0022-0833
1573-2703
language eng
recordid cdi_proquest_miscellaneous_28100624
source Springer Link
subjects Applied sciences
Exact sciences and technology
Foundry engineering
Metals. Metallurgy
Other casting methods. Solidification
Production techniques
title Coagulation equations with mass loss
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A46%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coagulation%20equations%20with%20mass%20loss&rft.jtitle=Journal%20of%20engineering%20mathematics&rft.au=WATTIS,%20Jonathan%20A.%20D&rft.date=2004-06-01&rft.volume=49&rft.issue=2&rft.spage=113&rft.epage=131&rft.pages=113-131&rft.issn=0022-0833&rft.eissn=1573-2703&rft.coden=JLEMAU&rft_id=info:doi/10.1023/B:ENGI.0000017474.05829.68&rft_dat=%3Cproquest_cross%3E28100624%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c374t-1184e803f891d863ef6e2a98906c857c3637595d8dfc9296e5b0e36f228c80433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28100624&rft_id=info:pmid/&rfr_iscdi=true