Loading…

Asymmetric electric field enhancement in nanocrystal memories

The electrostatic model for nanocrystal memories is used to illustrate the fundamental difference of the metal nanocrystal memory in low-voltage program/erase (P/E) operations in comparison with semiconductor nanocrystal and trap-based memories. Due to repulsion of potential contours inside conducto...

Full description

Saved in:
Bibliographic Details
Published in:IEEE electron device letters 2005-12, Vol.26 (12), p.879-881
Main Authors: Chungho Lee, Ganguly, U., Narayanan, V., Tuo-Hung Hou, Jinsook Kim, Kan, E.C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c480t-1ac711c516b68d1afd2a6ae43c36c6479e8573d190896a0169ada571219ba9f33
cites cdi_FETCH-LOGICAL-c480t-1ac711c516b68d1afd2a6ae43c36c6479e8573d190896a0169ada571219ba9f33
container_end_page 881
container_issue 12
container_start_page 879
container_title IEEE electron device letters
container_volume 26
creator Chungho Lee
Ganguly, U.
Narayanan, V.
Tuo-Hung Hou
Jinsook Kim
Kan, E.C.
description The electrostatic model for nanocrystal memories is used to illustrate the fundamental difference of the metal nanocrystal memory in low-voltage program/erase (P/E) operations in comparison with semiconductor nanocrystal and trap-based memories. Due to repulsion of potential contours inside conductors, the metal nanocrystals will significantly enhance the electric field between the nanocrystal and the sensing channel set up by the control gate bias and, hence, can achieve much higher efficiency in low-voltage P/E. On the other hand, the electric field originated from the stored charge will only be slightly different for metal and semiconductor nanocrystal cases. We presented the electrostatic models by both approximate analytical formulation and three-dimensional numerical simulation in a nanocrystal array. Operations of P/E and read disturbance were analyzed for the cases of homogeneous charge distribution, silicon, and metal nanocrystals. In the P/E condition of +5/-5 V, the metal nanocrystal memory offers around 1.6 times higher peak fields than Si counterparts and almost three times higher than that from the one-dimensional model for homogeneous charge distribution. The field enhancement factor suggests the design criteria of oxide thickness, nanocrystal size, and spacing. The advantage of asymmetric field enhancement of metal nanocrystals will be even more prominent when high-K gate dielectrics are employed.
doi_str_mv 10.1109/LED.2005.859634
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28101148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1546140</ieee_id><sourcerecordid>28101148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-1ac711c516b68d1afd2a6ae43c36c6479e8573d190896a0169ada571219ba9f33</originalsourceid><addsrcrecordid>eNp9kblLNEEQxRtRcD1iA5PhA49k1qrpOzAQb1gw0bhpe2r4RubQ7tlg_3t7XUEwMKqC-r1XVD3GjhDmiGAvFrc38wpAzo20iostNkMpTQlS8W02Ay2w5Ahql-2l9AaAQmgxY5dXadX3NMU2FNRR-Gqalrq6oOG_HwL1NExFOxSDH8YQV2nyXdFTP8aW0gHbaXyX6PC77rOXu9vn64dy8XT_eH21KIMwMJXog0YMEtWrMjX6pq688iR44CoooS0ZqXmNFoxVHlBZX3upsUL76m3D-T472_i-x_FjSWlyfZsCdZ0faFwml2VoUHGZydM_ycogIAqTwfM_QVR5v1a6shn99wt9G5dxyAc7ixVoruXa72IDhTimFKlx77HtfVw5BLcOyOWA3DogtwkoK06-bX0Kvmti_nabfmSagxICMne84Voi-hlLoTBPPwHOk5ak</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912073758</pqid></control><display><type>article</type><title>Asymmetric electric field enhancement in nanocrystal memories</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chungho Lee ; Ganguly, U. ; Narayanan, V. ; Tuo-Hung Hou ; Jinsook Kim ; Kan, E.C.</creator><creatorcontrib>Chungho Lee ; Ganguly, U. ; Narayanan, V. ; Tuo-Hung Hou ; Jinsook Kim ; Kan, E.C.</creatorcontrib><description>The electrostatic model for nanocrystal memories is used to illustrate the fundamental difference of the metal nanocrystal memory in low-voltage program/erase (P/E) operations in comparison with semiconductor nanocrystal and trap-based memories. Due to repulsion of potential contours inside conductors, the metal nanocrystals will significantly enhance the electric field between the nanocrystal and the sensing channel set up by the control gate bias and, hence, can achieve much higher efficiency in low-voltage P/E. On the other hand, the electric field originated from the stored charge will only be slightly different for metal and semiconductor nanocrystal cases. We presented the electrostatic models by both approximate analytical formulation and three-dimensional numerical simulation in a nanocrystal array. Operations of P/E and read disturbance were analyzed for the cases of homogeneous charge distribution, silicon, and metal nanocrystals. In the P/E condition of +5/-5 V, the metal nanocrystal memory offers around 1.6 times higher peak fields than Si counterparts and almost three times higher than that from the one-dimensional model for homogeneous charge distribution. The field enhancement factor suggests the design criteria of oxide thickness, nanocrystal size, and spacing. The advantage of asymmetric field enhancement of metal nanocrystals will be even more prominent when high-K gate dielectrics are employed.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2005.859634</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Asymmetry ; Charge distribution ; Conductors ; Design. Technologies. Operation analysis. Testing ; Dielectric substrates ; Electric field enhancement ; Electric fields ; Electronics ; Electrostatic analysis ; Electrostatics ; Exact sciences and technology ; Gates ; Geometry ; Gold ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Mathematical models ; Molecular electronics, nanoelectronics ; nanocrystal ; Nanocrystals ; nonvolatile memories ; Nonvolatile memory ; Numerical simulation ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; Silicon ; Solid modeling</subject><ispartof>IEEE electron device letters, 2005-12, Vol.26 (12), p.879-881</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-1ac711c516b68d1afd2a6ae43c36c6479e8573d190896a0169ada571219ba9f33</citedby><cites>FETCH-LOGICAL-c480t-1ac711c516b68d1afd2a6ae43c36c6479e8573d190896a0169ada571219ba9f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1546140$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27900,27901,54770</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17306440$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chungho Lee</creatorcontrib><creatorcontrib>Ganguly, U.</creatorcontrib><creatorcontrib>Narayanan, V.</creatorcontrib><creatorcontrib>Tuo-Hung Hou</creatorcontrib><creatorcontrib>Jinsook Kim</creatorcontrib><creatorcontrib>Kan, E.C.</creatorcontrib><title>Asymmetric electric field enhancement in nanocrystal memories</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>The electrostatic model for nanocrystal memories is used to illustrate the fundamental difference of the metal nanocrystal memory in low-voltage program/erase (P/E) operations in comparison with semiconductor nanocrystal and trap-based memories. Due to repulsion of potential contours inside conductors, the metal nanocrystals will significantly enhance the electric field between the nanocrystal and the sensing channel set up by the control gate bias and, hence, can achieve much higher efficiency in low-voltage P/E. On the other hand, the electric field originated from the stored charge will only be slightly different for metal and semiconductor nanocrystal cases. We presented the electrostatic models by both approximate analytical formulation and three-dimensional numerical simulation in a nanocrystal array. Operations of P/E and read disturbance were analyzed for the cases of homogeneous charge distribution, silicon, and metal nanocrystals. In the P/E condition of +5/-5 V, the metal nanocrystal memory offers around 1.6 times higher peak fields than Si counterparts and almost three times higher than that from the one-dimensional model for homogeneous charge distribution. The field enhancement factor suggests the design criteria of oxide thickness, nanocrystal size, and spacing. The advantage of asymmetric field enhancement of metal nanocrystals will be even more prominent when high-K gate dielectrics are employed.</description><subject>Applied sciences</subject><subject>Asymmetry</subject><subject>Charge distribution</subject><subject>Conductors</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Dielectric substrates</subject><subject>Electric field enhancement</subject><subject>Electric fields</subject><subject>Electronics</subject><subject>Electrostatic analysis</subject><subject>Electrostatics</subject><subject>Exact sciences and technology</subject><subject>Gates</subject><subject>Geometry</subject><subject>Gold</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Mathematical models</subject><subject>Molecular electronics, nanoelectronics</subject><subject>nanocrystal</subject><subject>Nanocrystals</subject><subject>nonvolatile memories</subject><subject>Nonvolatile memory</subject><subject>Numerical simulation</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Solid modeling</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kblLNEEQxRtRcD1iA5PhA49k1qrpOzAQb1gw0bhpe2r4RubQ7tlg_3t7XUEwMKqC-r1XVD3GjhDmiGAvFrc38wpAzo20iostNkMpTQlS8W02Ay2w5Ahql-2l9AaAQmgxY5dXadX3NMU2FNRR-Gqalrq6oOG_HwL1NExFOxSDH8YQV2nyXdFTP8aW0gHbaXyX6PC77rOXu9vn64dy8XT_eH21KIMwMJXog0YMEtWrMjX6pq688iR44CoooS0ZqXmNFoxVHlBZX3upsUL76m3D-T472_i-x_FjSWlyfZsCdZ0faFwml2VoUHGZydM_ycogIAqTwfM_QVR5v1a6shn99wt9G5dxyAc7ixVoruXa72IDhTimFKlx77HtfVw5BLcOyOWA3DogtwkoK06-bX0Kvmti_nabfmSagxICMne84Voi-hlLoTBPPwHOk5ak</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Chungho Lee</creator><creator>Ganguly, U.</creator><creator>Narayanan, V.</creator><creator>Tuo-Hung Hou</creator><creator>Jinsook Kim</creator><creator>Kan, E.C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>7U5</scope></search><sort><creationdate>20051201</creationdate><title>Asymmetric electric field enhancement in nanocrystal memories</title><author>Chungho Lee ; Ganguly, U. ; Narayanan, V. ; Tuo-Hung Hou ; Jinsook Kim ; Kan, E.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-1ac711c516b68d1afd2a6ae43c36c6479e8573d190896a0169ada571219ba9f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Asymmetry</topic><topic>Charge distribution</topic><topic>Conductors</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Dielectric substrates</topic><topic>Electric field enhancement</topic><topic>Electric fields</topic><topic>Electronics</topic><topic>Electrostatic analysis</topic><topic>Electrostatics</topic><topic>Exact sciences and technology</topic><topic>Gates</topic><topic>Geometry</topic><topic>Gold</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Mathematical models</topic><topic>Molecular electronics, nanoelectronics</topic><topic>nanocrystal</topic><topic>Nanocrystals</topic><topic>nonvolatile memories</topic><topic>Nonvolatile memory</topic><topic>Numerical simulation</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Solid modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chungho Lee</creatorcontrib><creatorcontrib>Ganguly, U.</creatorcontrib><creatorcontrib>Narayanan, V.</creatorcontrib><creatorcontrib>Tuo-Hung Hou</creatorcontrib><creatorcontrib>Jinsook Kim</creatorcontrib><creatorcontrib>Kan, E.C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Explore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chungho Lee</au><au>Ganguly, U.</au><au>Narayanan, V.</au><au>Tuo-Hung Hou</au><au>Jinsook Kim</au><au>Kan, E.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymmetric electric field enhancement in nanocrystal memories</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2005-12-01</date><risdate>2005</risdate><volume>26</volume><issue>12</issue><spage>879</spage><epage>881</epage><pages>879-881</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>The electrostatic model for nanocrystal memories is used to illustrate the fundamental difference of the metal nanocrystal memory in low-voltage program/erase (P/E) operations in comparison with semiconductor nanocrystal and trap-based memories. Due to repulsion of potential contours inside conductors, the metal nanocrystals will significantly enhance the electric field between the nanocrystal and the sensing channel set up by the control gate bias and, hence, can achieve much higher efficiency in low-voltage P/E. On the other hand, the electric field originated from the stored charge will only be slightly different for metal and semiconductor nanocrystal cases. We presented the electrostatic models by both approximate analytical formulation and three-dimensional numerical simulation in a nanocrystal array. Operations of P/E and read disturbance were analyzed for the cases of homogeneous charge distribution, silicon, and metal nanocrystals. In the P/E condition of +5/-5 V, the metal nanocrystal memory offers around 1.6 times higher peak fields than Si counterparts and almost three times higher than that from the one-dimensional model for homogeneous charge distribution. The field enhancement factor suggests the design criteria of oxide thickness, nanocrystal size, and spacing. The advantage of asymmetric field enhancement of metal nanocrystals will be even more prominent when high-K gate dielectrics are employed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/LED.2005.859634</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2005-12, Vol.26 (12), p.879-881
issn 0741-3106
1558-0563
language eng
recordid cdi_proquest_miscellaneous_28101148
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Asymmetry
Charge distribution
Conductors
Design. Technologies. Operation analysis. Testing
Dielectric substrates
Electric field enhancement
Electric fields
Electronics
Electrostatic analysis
Electrostatics
Exact sciences and technology
Gates
Geometry
Gold
Integrated circuits
Integrated circuits by function (including memories and processors)
Mathematical models
Molecular electronics, nanoelectronics
nanocrystal
Nanocrystals
nonvolatile memories
Nonvolatile memory
Numerical simulation
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Semiconductors
Silicon
Solid modeling
title Asymmetric electric field enhancement in nanocrystal memories
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T10%3A26%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymmetric%20electric%20field%20enhancement%20in%20nanocrystal%20memories&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Chungho%20Lee&rft.date=2005-12-01&rft.volume=26&rft.issue=12&rft.spage=879&rft.epage=881&rft.pages=879-881&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2005.859634&rft_dat=%3Cproquest_cross%3E28101148%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c480t-1ac711c516b68d1afd2a6ae43c36c6479e8573d190896a0169ada571219ba9f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912073758&rft_id=info:pmid/&rft_ieee_id=1546140&rfr_iscdi=true