Loading…
Asymmetric electric field enhancement in nanocrystal memories
The electrostatic model for nanocrystal memories is used to illustrate the fundamental difference of the metal nanocrystal memory in low-voltage program/erase (P/E) operations in comparison with semiconductor nanocrystal and trap-based memories. Due to repulsion of potential contours inside conducto...
Saved in:
Published in: | IEEE electron device letters 2005-12, Vol.26 (12), p.879-881 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c480t-1ac711c516b68d1afd2a6ae43c36c6479e8573d190896a0169ada571219ba9f33 |
---|---|
cites | cdi_FETCH-LOGICAL-c480t-1ac711c516b68d1afd2a6ae43c36c6479e8573d190896a0169ada571219ba9f33 |
container_end_page | 881 |
container_issue | 12 |
container_start_page | 879 |
container_title | IEEE electron device letters |
container_volume | 26 |
creator | Chungho Lee Ganguly, U. Narayanan, V. Tuo-Hung Hou Jinsook Kim Kan, E.C. |
description | The electrostatic model for nanocrystal memories is used to illustrate the fundamental difference of the metal nanocrystal memory in low-voltage program/erase (P/E) operations in comparison with semiconductor nanocrystal and trap-based memories. Due to repulsion of potential contours inside conductors, the metal nanocrystals will significantly enhance the electric field between the nanocrystal and the sensing channel set up by the control gate bias and, hence, can achieve much higher efficiency in low-voltage P/E. On the other hand, the electric field originated from the stored charge will only be slightly different for metal and semiconductor nanocrystal cases. We presented the electrostatic models by both approximate analytical formulation and three-dimensional numerical simulation in a nanocrystal array. Operations of P/E and read disturbance were analyzed for the cases of homogeneous charge distribution, silicon, and metal nanocrystals. In the P/E condition of +5/-5 V, the metal nanocrystal memory offers around 1.6 times higher peak fields than Si counterparts and almost three times higher than that from the one-dimensional model for homogeneous charge distribution. The field enhancement factor suggests the design criteria of oxide thickness, nanocrystal size, and spacing. The advantage of asymmetric field enhancement of metal nanocrystals will be even more prominent when high-K gate dielectrics are employed. |
doi_str_mv | 10.1109/LED.2005.859634 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28101148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1546140</ieee_id><sourcerecordid>28101148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-1ac711c516b68d1afd2a6ae43c36c6479e8573d190896a0169ada571219ba9f33</originalsourceid><addsrcrecordid>eNp9kblLNEEQxRtRcD1iA5PhA49k1qrpOzAQb1gw0bhpe2r4RubQ7tlg_3t7XUEwMKqC-r1XVD3GjhDmiGAvFrc38wpAzo20iostNkMpTQlS8W02Ay2w5Ahql-2l9AaAQmgxY5dXadX3NMU2FNRR-Gqalrq6oOG_HwL1NExFOxSDH8YQV2nyXdFTP8aW0gHbaXyX6PC77rOXu9vn64dy8XT_eH21KIMwMJXog0YMEtWrMjX6pq688iR44CoooS0ZqXmNFoxVHlBZX3upsUL76m3D-T472_i-x_FjSWlyfZsCdZ0faFwml2VoUHGZydM_ycogIAqTwfM_QVR5v1a6shn99wt9G5dxyAc7ixVoruXa72IDhTimFKlx77HtfVw5BLcOyOWA3DogtwkoK06-bX0Kvmti_nabfmSagxICMne84Voi-hlLoTBPPwHOk5ak</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912073758</pqid></control><display><type>article</type><title>Asymmetric electric field enhancement in nanocrystal memories</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chungho Lee ; Ganguly, U. ; Narayanan, V. ; Tuo-Hung Hou ; Jinsook Kim ; Kan, E.C.</creator><creatorcontrib>Chungho Lee ; Ganguly, U. ; Narayanan, V. ; Tuo-Hung Hou ; Jinsook Kim ; Kan, E.C.</creatorcontrib><description>The electrostatic model for nanocrystal memories is used to illustrate the fundamental difference of the metal nanocrystal memory in low-voltage program/erase (P/E) operations in comparison with semiconductor nanocrystal and trap-based memories. Due to repulsion of potential contours inside conductors, the metal nanocrystals will significantly enhance the electric field between the nanocrystal and the sensing channel set up by the control gate bias and, hence, can achieve much higher efficiency in low-voltage P/E. On the other hand, the electric field originated from the stored charge will only be slightly different for metal and semiconductor nanocrystal cases. We presented the electrostatic models by both approximate analytical formulation and three-dimensional numerical simulation in a nanocrystal array. Operations of P/E and read disturbance were analyzed for the cases of homogeneous charge distribution, silicon, and metal nanocrystals. In the P/E condition of +5/-5 V, the metal nanocrystal memory offers around 1.6 times higher peak fields than Si counterparts and almost three times higher than that from the one-dimensional model for homogeneous charge distribution. The field enhancement factor suggests the design criteria of oxide thickness, nanocrystal size, and spacing. The advantage of asymmetric field enhancement of metal nanocrystals will be even more prominent when high-K gate dielectrics are employed.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2005.859634</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Asymmetry ; Charge distribution ; Conductors ; Design. Technologies. Operation analysis. Testing ; Dielectric substrates ; Electric field enhancement ; Electric fields ; Electronics ; Electrostatic analysis ; Electrostatics ; Exact sciences and technology ; Gates ; Geometry ; Gold ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Mathematical models ; Molecular electronics, nanoelectronics ; nanocrystal ; Nanocrystals ; nonvolatile memories ; Nonvolatile memory ; Numerical simulation ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; Silicon ; Solid modeling</subject><ispartof>IEEE electron device letters, 2005-12, Vol.26 (12), p.879-881</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-1ac711c516b68d1afd2a6ae43c36c6479e8573d190896a0169ada571219ba9f33</citedby><cites>FETCH-LOGICAL-c480t-1ac711c516b68d1afd2a6ae43c36c6479e8573d190896a0169ada571219ba9f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1546140$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27900,27901,54770</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17306440$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chungho Lee</creatorcontrib><creatorcontrib>Ganguly, U.</creatorcontrib><creatorcontrib>Narayanan, V.</creatorcontrib><creatorcontrib>Tuo-Hung Hou</creatorcontrib><creatorcontrib>Jinsook Kim</creatorcontrib><creatorcontrib>Kan, E.C.</creatorcontrib><title>Asymmetric electric field enhancement in nanocrystal memories</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>The electrostatic model for nanocrystal memories is used to illustrate the fundamental difference of the metal nanocrystal memory in low-voltage program/erase (P/E) operations in comparison with semiconductor nanocrystal and trap-based memories. Due to repulsion of potential contours inside conductors, the metal nanocrystals will significantly enhance the electric field between the nanocrystal and the sensing channel set up by the control gate bias and, hence, can achieve much higher efficiency in low-voltage P/E. On the other hand, the electric field originated from the stored charge will only be slightly different for metal and semiconductor nanocrystal cases. We presented the electrostatic models by both approximate analytical formulation and three-dimensional numerical simulation in a nanocrystal array. Operations of P/E and read disturbance were analyzed for the cases of homogeneous charge distribution, silicon, and metal nanocrystals. In the P/E condition of +5/-5 V, the metal nanocrystal memory offers around 1.6 times higher peak fields than Si counterparts and almost three times higher than that from the one-dimensional model for homogeneous charge distribution. The field enhancement factor suggests the design criteria of oxide thickness, nanocrystal size, and spacing. The advantage of asymmetric field enhancement of metal nanocrystals will be even more prominent when high-K gate dielectrics are employed.</description><subject>Applied sciences</subject><subject>Asymmetry</subject><subject>Charge distribution</subject><subject>Conductors</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Dielectric substrates</subject><subject>Electric field enhancement</subject><subject>Electric fields</subject><subject>Electronics</subject><subject>Electrostatic analysis</subject><subject>Electrostatics</subject><subject>Exact sciences and technology</subject><subject>Gates</subject><subject>Geometry</subject><subject>Gold</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Mathematical models</subject><subject>Molecular electronics, nanoelectronics</subject><subject>nanocrystal</subject><subject>Nanocrystals</subject><subject>nonvolatile memories</subject><subject>Nonvolatile memory</subject><subject>Numerical simulation</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Solid modeling</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kblLNEEQxRtRcD1iA5PhA49k1qrpOzAQb1gw0bhpe2r4RubQ7tlg_3t7XUEwMKqC-r1XVD3GjhDmiGAvFrc38wpAzo20iostNkMpTQlS8W02Ay2w5Ahql-2l9AaAQmgxY5dXadX3NMU2FNRR-Gqalrq6oOG_HwL1NExFOxSDH8YQV2nyXdFTP8aW0gHbaXyX6PC77rOXu9vn64dy8XT_eH21KIMwMJXog0YMEtWrMjX6pq688iR44CoooS0ZqXmNFoxVHlBZX3upsUL76m3D-T472_i-x_FjSWlyfZsCdZ0faFwml2VoUHGZydM_ycogIAqTwfM_QVR5v1a6shn99wt9G5dxyAc7ixVoruXa72IDhTimFKlx77HtfVw5BLcOyOWA3DogtwkoK06-bX0Kvmti_nabfmSagxICMne84Voi-hlLoTBPPwHOk5ak</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Chungho Lee</creator><creator>Ganguly, U.</creator><creator>Narayanan, V.</creator><creator>Tuo-Hung Hou</creator><creator>Jinsook Kim</creator><creator>Kan, E.C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>7U5</scope></search><sort><creationdate>20051201</creationdate><title>Asymmetric electric field enhancement in nanocrystal memories</title><author>Chungho Lee ; Ganguly, U. ; Narayanan, V. ; Tuo-Hung Hou ; Jinsook Kim ; Kan, E.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-1ac711c516b68d1afd2a6ae43c36c6479e8573d190896a0169ada571219ba9f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Asymmetry</topic><topic>Charge distribution</topic><topic>Conductors</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Dielectric substrates</topic><topic>Electric field enhancement</topic><topic>Electric fields</topic><topic>Electronics</topic><topic>Electrostatic analysis</topic><topic>Electrostatics</topic><topic>Exact sciences and technology</topic><topic>Gates</topic><topic>Geometry</topic><topic>Gold</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Mathematical models</topic><topic>Molecular electronics, nanoelectronics</topic><topic>nanocrystal</topic><topic>Nanocrystals</topic><topic>nonvolatile memories</topic><topic>Nonvolatile memory</topic><topic>Numerical simulation</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Solid modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chungho Lee</creatorcontrib><creatorcontrib>Ganguly, U.</creatorcontrib><creatorcontrib>Narayanan, V.</creatorcontrib><creatorcontrib>Tuo-Hung Hou</creatorcontrib><creatorcontrib>Jinsook Kim</creatorcontrib><creatorcontrib>Kan, E.C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Explore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chungho Lee</au><au>Ganguly, U.</au><au>Narayanan, V.</au><au>Tuo-Hung Hou</au><au>Jinsook Kim</au><au>Kan, E.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymmetric electric field enhancement in nanocrystal memories</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2005-12-01</date><risdate>2005</risdate><volume>26</volume><issue>12</issue><spage>879</spage><epage>881</epage><pages>879-881</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>The electrostatic model for nanocrystal memories is used to illustrate the fundamental difference of the metal nanocrystal memory in low-voltage program/erase (P/E) operations in comparison with semiconductor nanocrystal and trap-based memories. Due to repulsion of potential contours inside conductors, the metal nanocrystals will significantly enhance the electric field between the nanocrystal and the sensing channel set up by the control gate bias and, hence, can achieve much higher efficiency in low-voltage P/E. On the other hand, the electric field originated from the stored charge will only be slightly different for metal and semiconductor nanocrystal cases. We presented the electrostatic models by both approximate analytical formulation and three-dimensional numerical simulation in a nanocrystal array. Operations of P/E and read disturbance were analyzed for the cases of homogeneous charge distribution, silicon, and metal nanocrystals. In the P/E condition of +5/-5 V, the metal nanocrystal memory offers around 1.6 times higher peak fields than Si counterparts and almost three times higher than that from the one-dimensional model for homogeneous charge distribution. The field enhancement factor suggests the design criteria of oxide thickness, nanocrystal size, and spacing. The advantage of asymmetric field enhancement of metal nanocrystals will be even more prominent when high-K gate dielectrics are employed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/LED.2005.859634</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0741-3106 |
ispartof | IEEE electron device letters, 2005-12, Vol.26 (12), p.879-881 |
issn | 0741-3106 1558-0563 |
language | eng |
recordid | cdi_proquest_miscellaneous_28101148 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Asymmetry Charge distribution Conductors Design. Technologies. Operation analysis. Testing Dielectric substrates Electric field enhancement Electric fields Electronics Electrostatic analysis Electrostatics Exact sciences and technology Gates Geometry Gold Integrated circuits Integrated circuits by function (including memories and processors) Mathematical models Molecular electronics, nanoelectronics nanocrystal Nanocrystals nonvolatile memories Nonvolatile memory Numerical simulation Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Semiconductors Silicon Solid modeling |
title | Asymmetric electric field enhancement in nanocrystal memories |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T10%3A26%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymmetric%20electric%20field%20enhancement%20in%20nanocrystal%20memories&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Chungho%20Lee&rft.date=2005-12-01&rft.volume=26&rft.issue=12&rft.spage=879&rft.epage=881&rft.pages=879-881&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2005.859634&rft_dat=%3Cproquest_cross%3E28101148%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c480t-1ac711c516b68d1afd2a6ae43c36c6479e8573d190896a0169ada571219ba9f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912073758&rft_id=info:pmid/&rft_ieee_id=1546140&rfr_iscdi=true |