Loading…

Automatic facial expression recognition using facial animation parameters and multistream HMMs

The performance of an automatic facial expression recognition system can be significantly improved by modeling the reliability of different streams of facial expression information utilizing multistream hidden Markov models (HMMs). In this paper, we present an automatic multistream HMM facial expres...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information forensics and security 2006-03, Vol.1 (1), p.3-11
Main Authors: Aleksic, P.S., Katsaggelos, A.K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The performance of an automatic facial expression recognition system can be significantly improved by modeling the reliability of different streams of facial expression information utilizing multistream hidden Markov models (HMMs). In this paper, we present an automatic multistream HMM facial expression recognition system and analyze its performance. The proposed system utilizes facial animation parameters (FAPs), supported by the MPEG-4 standard, as features for facial expression classification. Specifically, the FAPs describing the movement of the outer-lip contours and eyebrows are used as observations. Experiments are first performed employing single-stream HMMs under several different scenarios, utilizing outer-lip and eyebrow FAPs individually and jointly. A multistream HMM approach is proposed for introducing facial expression and FAP group dependent stream reliability weights. The stream weights are determined based on the facial expression recognition results obtained when FAP streams are utilized individually. The proposed multistream HMM facial expression system, which utilizes stream reliability weights, achieves relative reduction of the facial expression recognition error of 44% compared to the single-stream HMM system.
ISSN:1556-6013
1556-6021
DOI:10.1109/TIFS.2005.863510