Loading…
Validation of the Shuttle Radar Topography Mission height data
The Shuttle Radar Topography Mission (SRTM) provided data for detailed topographical maps of about 80% of the Earth's land surface. SRTM consisted of single-pass C- and X-band interferometric synthetic aperture radars (INSARs). In order to utilize SRTM data in remote sensing applications the da...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2005-08, Vol.43 (8), p.1707-1715 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Shuttle Radar Topography Mission (SRTM) provided data for detailed topographical maps of about 80% of the Earth's land surface. SRTM consisted of single-pass C- and X-band interferometric synthetic aperture radars (INSARs). In order to utilize SRTM data in remote sensing applications the data must be calibrated and validated. This paper presents The University of Michigan's SRTM calibration and validation campaign and our results using recently acquired C-band SRTM data of our calibration sites. An array of calibration targets was deployed with the intention of determining the accuracy of INSAR-derived digital elevation maps. The array spanned one of the X-band swaths and stretched from Toledo, OH to Lansing, MI. Passive and active targets were used. The passive targets included trihedrals and tophats. The locations in latitude, longitude, and elevation of the point targets were determined using differential GPS. We also acquired U.S. Geological Survey (USGS) digital elevation models (DEMs) to use in the calibration and validation work. The SRTM data used in this study are both Principal Investigator Processor (PI) data, which are not the refined final data product, and the ground data processing system (GDPS) data, which are a more refined data product. We report that both datasets for southeastern Michigan exceed the SRTM mission specifications for absolute and relative height errors for our point targets. A more extensive analysis of the SRTM GDPS data indicates that it meets the absolute and relative accuracy requirements even for bare surface areas. In addition, we validate the PI height error files, which are used to provide a statistical characterization of the difference between the SRTM GDPS and USGS DEM heights. The statistical characterization of the GDPS-USGS difference is of interest in forest parameter retrieval algorithms. |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2005.851789 |