Loading…

Use of the Bradley-Terry model to quantify association in remotely sensed images

Thematic maps prepared from remotely sensed images require a statistical accuracy assessment. For this purpose, the /spl kappa/-statistic is often used. This statistic does not distinguish between whether one unit is classified as another, or vice versa. In this paper, the Bradley-Terry (BT) model i...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2005-04, Vol.43 (4), p.852-856
Main Authors: Stein, A., Aryal, J., Gort, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c417t-e21149f7727d5205343db0b1c4c1a092b3f3fb7768bdb5548e46e3d3eee0ed6b3
cites cdi_FETCH-LOGICAL-c417t-e21149f7727d5205343db0b1c4c1a092b3f3fb7768bdb5548e46e3d3eee0ed6b3
container_end_page 856
container_issue 4
container_start_page 852
container_title IEEE transactions on geoscience and remote sensing
container_volume 43
creator Stein, A.
Aryal, J.
Gort, G.
description Thematic maps prepared from remotely sensed images require a statistical accuracy assessment. For this purpose, the /spl kappa/-statistic is often used. This statistic does not distinguish between whether one unit is classified as another, or vice versa. In this paper, the Bradley-Terry (BT) model is applied for accuracy assessment. This model compares categories pairwise. The probability of one class over another class is estimated as well as the expected values of class pixels. The study is illustrated with an Advanced Spaceborne Thermal Emission and Reflection Radiometer image from the Netherlands, to which a maximum-likelihood classification with the Euclidean distance is applied. An error matrix is generated using an IKONOS image from the same area as ground truth. It is shown to which degree the BT model extends the /spl kappa/-statistic. A comparison with the Mahalanobis distance is made. Standardization is carried out to overcome problems emerging from the fact that a common BT model does not include the number of correctly classified pixels. The study shows how the BT model serves as an alternative to the usual /spl kappa/-statistic.
doi_str_mv 10.1109/TGRS.2005.843569
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28108044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1411991</ieee_id><sourcerecordid>28108044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-e21149f7727d5205343db0b1c4c1a092b3f3fb7768bdb5548e46e3d3eee0ed6b3</originalsourceid><addsrcrecordid>eNqF0U1LHEEQBuAmKGTV3AO5NDlEL7Op6u8-xkWNICjJem7mo8aMzE5r9-xh_r2zbkDIwZzq8lRBvS9jnxGWiOC_r69-_V4KAL10SmrjP7AFau0KMEodsAWgN4VwXnxkRzk_AqDSaBfs7j4Tjy0f_xA_T2XT01SsKaWJb2JDPR8jf96Ww9i1Ey9zjnVXjl0ceDfwRJs4Uj_xTEOmhneb8oHyCTtsyz7Tp7_zmN1fXqxXP4ub26vr1Y-bolZox4IEovKttcI2WoCWSjYVVFirGkvwopKtbCtrjauaSmvlSBmSjSQioMZU8pid7u8-pfi8pTyGTZdr6vtyoLjNwXkjhNFWzfLbu1J4kNJo_3_oEByo3cWzdyFaC8JL-0q__kMf4zYNczLBGWvU_DnOCPaoTjHnRG14SnOaaQoIYddu2LUbdu2Gfbvzypf9Sjcn8sYVovcoXwBdjp8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867640531</pqid></control><display><type>article</type><title>Use of the Bradley-Terry model to quantify association in remotely sensed images</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Stein, A. ; Aryal, J. ; Gort, G.</creator><creatorcontrib>Stein, A. ; Aryal, J. ; Gort, G.</creatorcontrib><description>Thematic maps prepared from remotely sensed images require a statistical accuracy assessment. For this purpose, the /spl kappa/-statistic is often used. This statistic does not distinguish between whether one unit is classified as another, or vice versa. In this paper, the Bradley-Terry (BT) model is applied for accuracy assessment. This model compares categories pairwise. The probability of one class over another class is estimated as well as the expected values of class pixels. The study is illustrated with an Advanced Spaceborne Thermal Emission and Reflection Radiometer image from the Netherlands, to which a maximum-likelihood classification with the Euclidean distance is applied. An error matrix is generated using an IKONOS image from the same area as ground truth. It is shown to which degree the BT model extends the /spl kappa/-statistic. A comparison with the Mahalanobis distance is made. Standardization is carried out to overcome problems emerging from the fact that a common BT model does not include the number of correctly classified pixels. The study shows how the BT model serves as an alternative to the usual /spl kappa/-statistic.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2005.843569</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Assessments ; Bradley-Terry (BT) model ; Earth ; estimates of parameters ; Maximum likelihood estimation ; measures of association ; Multispectral imaging ; Parameter estimation ; Pixel ; Pixels ; Radiometry ; Reflection ; Remote sensing ; Statistics ; Testing ; Thermal emission</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2005-04, Vol.43 (4), p.852-856</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-e21149f7727d5205343db0b1c4c1a092b3f3fb7768bdb5548e46e3d3eee0ed6b3</citedby><cites>FETCH-LOGICAL-c417t-e21149f7727d5205343db0b1c4c1a092b3f3fb7768bdb5548e46e3d3eee0ed6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1411991$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Stein, A.</creatorcontrib><creatorcontrib>Aryal, J.</creatorcontrib><creatorcontrib>Gort, G.</creatorcontrib><title>Use of the Bradley-Terry model to quantify association in remotely sensed images</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Thematic maps prepared from remotely sensed images require a statistical accuracy assessment. For this purpose, the /spl kappa/-statistic is often used. This statistic does not distinguish between whether one unit is classified as another, or vice versa. In this paper, the Bradley-Terry (BT) model is applied for accuracy assessment. This model compares categories pairwise. The probability of one class over another class is estimated as well as the expected values of class pixels. The study is illustrated with an Advanced Spaceborne Thermal Emission and Reflection Radiometer image from the Netherlands, to which a maximum-likelihood classification with the Euclidean distance is applied. An error matrix is generated using an IKONOS image from the same area as ground truth. It is shown to which degree the BT model extends the /spl kappa/-statistic. A comparison with the Mahalanobis distance is made. Standardization is carried out to overcome problems emerging from the fact that a common BT model does not include the number of correctly classified pixels. The study shows how the BT model serves as an alternative to the usual /spl kappa/-statistic.</description><subject>Accuracy</subject><subject>Assessments</subject><subject>Bradley-Terry (BT) model</subject><subject>Earth</subject><subject>estimates of parameters</subject><subject>Maximum likelihood estimation</subject><subject>measures of association</subject><subject>Multispectral imaging</subject><subject>Parameter estimation</subject><subject>Pixel</subject><subject>Pixels</subject><subject>Radiometry</subject><subject>Reflection</subject><subject>Remote sensing</subject><subject>Statistics</subject><subject>Testing</subject><subject>Thermal emission</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqF0U1LHEEQBuAmKGTV3AO5NDlEL7Op6u8-xkWNICjJem7mo8aMzE5r9-xh_r2zbkDIwZzq8lRBvS9jnxGWiOC_r69-_V4KAL10SmrjP7AFau0KMEodsAWgN4VwXnxkRzk_AqDSaBfs7j4Tjy0f_xA_T2XT01SsKaWJb2JDPR8jf96Ww9i1Ey9zjnVXjl0ceDfwRJs4Uj_xTEOmhneb8oHyCTtsyz7Tp7_zmN1fXqxXP4ub26vr1Y-bolZox4IEovKttcI2WoCWSjYVVFirGkvwopKtbCtrjauaSmvlSBmSjSQioMZU8pid7u8-pfi8pTyGTZdr6vtyoLjNwXkjhNFWzfLbu1J4kNJo_3_oEByo3cWzdyFaC8JL-0q__kMf4zYNczLBGWvU_DnOCPaoTjHnRG14SnOaaQoIYddu2LUbdu2Gfbvzypf9Sjcn8sYVovcoXwBdjp8g</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Stein, A.</creator><creator>Aryal, J.</creator><creator>Gort, G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope><scope>7U5</scope></search><sort><creationdate>20050401</creationdate><title>Use of the Bradley-Terry model to quantify association in remotely sensed images</title><author>Stein, A. ; Aryal, J. ; Gort, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-e21149f7727d5205343db0b1c4c1a092b3f3fb7768bdb5548e46e3d3eee0ed6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Accuracy</topic><topic>Assessments</topic><topic>Bradley-Terry (BT) model</topic><topic>Earth</topic><topic>estimates of parameters</topic><topic>Maximum likelihood estimation</topic><topic>measures of association</topic><topic>Multispectral imaging</topic><topic>Parameter estimation</topic><topic>Pixel</topic><topic>Pixels</topic><topic>Radiometry</topic><topic>Reflection</topic><topic>Remote sensing</topic><topic>Statistics</topic><topic>Testing</topic><topic>Thermal emission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stein, A.</creatorcontrib><creatorcontrib>Aryal, J.</creatorcontrib><creatorcontrib>Gort, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stein, A.</au><au>Aryal, J.</au><au>Gort, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of the Bradley-Terry model to quantify association in remotely sensed images</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2005-04-01</date><risdate>2005</risdate><volume>43</volume><issue>4</issue><spage>852</spage><epage>856</epage><pages>852-856</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Thematic maps prepared from remotely sensed images require a statistical accuracy assessment. For this purpose, the /spl kappa/-statistic is often used. This statistic does not distinguish between whether one unit is classified as another, or vice versa. In this paper, the Bradley-Terry (BT) model is applied for accuracy assessment. This model compares categories pairwise. The probability of one class over another class is estimated as well as the expected values of class pixels. The study is illustrated with an Advanced Spaceborne Thermal Emission and Reflection Radiometer image from the Netherlands, to which a maximum-likelihood classification with the Euclidean distance is applied. An error matrix is generated using an IKONOS image from the same area as ground truth. It is shown to which degree the BT model extends the /spl kappa/-statistic. A comparison with the Mahalanobis distance is made. Standardization is carried out to overcome problems emerging from the fact that a common BT model does not include the number of correctly classified pixels. The study shows how the BT model serves as an alternative to the usual /spl kappa/-statistic.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2005.843569</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2005-04, Vol.43 (4), p.852-856
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_miscellaneous_28108044
source IEEE Electronic Library (IEL) Journals
subjects Accuracy
Assessments
Bradley-Terry (BT) model
Earth
estimates of parameters
Maximum likelihood estimation
measures of association
Multispectral imaging
Parameter estimation
Pixel
Pixels
Radiometry
Reflection
Remote sensing
Statistics
Testing
Thermal emission
title Use of the Bradley-Terry model to quantify association in remotely sensed images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T09%3A41%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20the%20Bradley-Terry%20model%20to%20quantify%20association%20in%20remotely%20sensed%20images&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Stein,%20A.&rft.date=2005-04-01&rft.volume=43&rft.issue=4&rft.spage=852&rft.epage=856&rft.pages=852-856&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2005.843569&rft_dat=%3Cproquest_cross%3E28108044%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-e21149f7727d5205343db0b1c4c1a092b3f3fb7768bdb5548e46e3d3eee0ed6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=867640531&rft_id=info:pmid/&rft_ieee_id=1411991&rfr_iscdi=true