Loading…
Use of the Bradley-Terry model to quantify association in remotely sensed images
Thematic maps prepared from remotely sensed images require a statistical accuracy assessment. For this purpose, the /spl kappa/-statistic is often used. This statistic does not distinguish between whether one unit is classified as another, or vice versa. In this paper, the Bradley-Terry (BT) model i...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2005-04, Vol.43 (4), p.852-856 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c417t-e21149f7727d5205343db0b1c4c1a092b3f3fb7768bdb5548e46e3d3eee0ed6b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c417t-e21149f7727d5205343db0b1c4c1a092b3f3fb7768bdb5548e46e3d3eee0ed6b3 |
container_end_page | 856 |
container_issue | 4 |
container_start_page | 852 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 43 |
creator | Stein, A. Aryal, J. Gort, G. |
description | Thematic maps prepared from remotely sensed images require a statistical accuracy assessment. For this purpose, the /spl kappa/-statistic is often used. This statistic does not distinguish between whether one unit is classified as another, or vice versa. In this paper, the Bradley-Terry (BT) model is applied for accuracy assessment. This model compares categories pairwise. The probability of one class over another class is estimated as well as the expected values of class pixels. The study is illustrated with an Advanced Spaceborne Thermal Emission and Reflection Radiometer image from the Netherlands, to which a maximum-likelihood classification with the Euclidean distance is applied. An error matrix is generated using an IKONOS image from the same area as ground truth. It is shown to which degree the BT model extends the /spl kappa/-statistic. A comparison with the Mahalanobis distance is made. Standardization is carried out to overcome problems emerging from the fact that a common BT model does not include the number of correctly classified pixels. The study shows how the BT model serves as an alternative to the usual /spl kappa/-statistic. |
doi_str_mv | 10.1109/TGRS.2005.843569 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28108044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1411991</ieee_id><sourcerecordid>28108044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-e21149f7727d5205343db0b1c4c1a092b3f3fb7768bdb5548e46e3d3eee0ed6b3</originalsourceid><addsrcrecordid>eNqF0U1LHEEQBuAmKGTV3AO5NDlEL7Op6u8-xkWNICjJem7mo8aMzE5r9-xh_r2zbkDIwZzq8lRBvS9jnxGWiOC_r69-_V4KAL10SmrjP7AFau0KMEodsAWgN4VwXnxkRzk_AqDSaBfs7j4Tjy0f_xA_T2XT01SsKaWJb2JDPR8jf96Ww9i1Ey9zjnVXjl0ceDfwRJs4Uj_xTEOmhneb8oHyCTtsyz7Tp7_zmN1fXqxXP4ub26vr1Y-bolZox4IEovKttcI2WoCWSjYVVFirGkvwopKtbCtrjauaSmvlSBmSjSQioMZU8pid7u8-pfi8pTyGTZdr6vtyoLjNwXkjhNFWzfLbu1J4kNJo_3_oEByo3cWzdyFaC8JL-0q__kMf4zYNczLBGWvU_DnOCPaoTjHnRG14SnOaaQoIYddu2LUbdu2Gfbvzypf9Sjcn8sYVovcoXwBdjp8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867640531</pqid></control><display><type>article</type><title>Use of the Bradley-Terry model to quantify association in remotely sensed images</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Stein, A. ; Aryal, J. ; Gort, G.</creator><creatorcontrib>Stein, A. ; Aryal, J. ; Gort, G.</creatorcontrib><description>Thematic maps prepared from remotely sensed images require a statistical accuracy assessment. For this purpose, the /spl kappa/-statistic is often used. This statistic does not distinguish between whether one unit is classified as another, or vice versa. In this paper, the Bradley-Terry (BT) model is applied for accuracy assessment. This model compares categories pairwise. The probability of one class over another class is estimated as well as the expected values of class pixels. The study is illustrated with an Advanced Spaceborne Thermal Emission and Reflection Radiometer image from the Netherlands, to which a maximum-likelihood classification with the Euclidean distance is applied. An error matrix is generated using an IKONOS image from the same area as ground truth. It is shown to which degree the BT model extends the /spl kappa/-statistic. A comparison with the Mahalanobis distance is made. Standardization is carried out to overcome problems emerging from the fact that a common BT model does not include the number of correctly classified pixels. The study shows how the BT model serves as an alternative to the usual /spl kappa/-statistic.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2005.843569</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Assessments ; Bradley-Terry (BT) model ; Earth ; estimates of parameters ; Maximum likelihood estimation ; measures of association ; Multispectral imaging ; Parameter estimation ; Pixel ; Pixels ; Radiometry ; Reflection ; Remote sensing ; Statistics ; Testing ; Thermal emission</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2005-04, Vol.43 (4), p.852-856</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-e21149f7727d5205343db0b1c4c1a092b3f3fb7768bdb5548e46e3d3eee0ed6b3</citedby><cites>FETCH-LOGICAL-c417t-e21149f7727d5205343db0b1c4c1a092b3f3fb7768bdb5548e46e3d3eee0ed6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1411991$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Stein, A.</creatorcontrib><creatorcontrib>Aryal, J.</creatorcontrib><creatorcontrib>Gort, G.</creatorcontrib><title>Use of the Bradley-Terry model to quantify association in remotely sensed images</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Thematic maps prepared from remotely sensed images require a statistical accuracy assessment. For this purpose, the /spl kappa/-statistic is often used. This statistic does not distinguish between whether one unit is classified as another, or vice versa. In this paper, the Bradley-Terry (BT) model is applied for accuracy assessment. This model compares categories pairwise. The probability of one class over another class is estimated as well as the expected values of class pixels. The study is illustrated with an Advanced Spaceborne Thermal Emission and Reflection Radiometer image from the Netherlands, to which a maximum-likelihood classification with the Euclidean distance is applied. An error matrix is generated using an IKONOS image from the same area as ground truth. It is shown to which degree the BT model extends the /spl kappa/-statistic. A comparison with the Mahalanobis distance is made. Standardization is carried out to overcome problems emerging from the fact that a common BT model does not include the number of correctly classified pixels. The study shows how the BT model serves as an alternative to the usual /spl kappa/-statistic.</description><subject>Accuracy</subject><subject>Assessments</subject><subject>Bradley-Terry (BT) model</subject><subject>Earth</subject><subject>estimates of parameters</subject><subject>Maximum likelihood estimation</subject><subject>measures of association</subject><subject>Multispectral imaging</subject><subject>Parameter estimation</subject><subject>Pixel</subject><subject>Pixels</subject><subject>Radiometry</subject><subject>Reflection</subject><subject>Remote sensing</subject><subject>Statistics</subject><subject>Testing</subject><subject>Thermal emission</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqF0U1LHEEQBuAmKGTV3AO5NDlEL7Op6u8-xkWNICjJem7mo8aMzE5r9-xh_r2zbkDIwZzq8lRBvS9jnxGWiOC_r69-_V4KAL10SmrjP7AFau0KMEodsAWgN4VwXnxkRzk_AqDSaBfs7j4Tjy0f_xA_T2XT01SsKaWJb2JDPR8jf96Ww9i1Ey9zjnVXjl0ceDfwRJs4Uj_xTEOmhneb8oHyCTtsyz7Tp7_zmN1fXqxXP4ub26vr1Y-bolZox4IEovKttcI2WoCWSjYVVFirGkvwopKtbCtrjauaSmvlSBmSjSQioMZU8pid7u8-pfi8pTyGTZdr6vtyoLjNwXkjhNFWzfLbu1J4kNJo_3_oEByo3cWzdyFaC8JL-0q__kMf4zYNczLBGWvU_DnOCPaoTjHnRG14SnOaaQoIYddu2LUbdu2Gfbvzypf9Sjcn8sYVovcoXwBdjp8g</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Stein, A.</creator><creator>Aryal, J.</creator><creator>Gort, G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope><scope>7U5</scope></search><sort><creationdate>20050401</creationdate><title>Use of the Bradley-Terry model to quantify association in remotely sensed images</title><author>Stein, A. ; Aryal, J. ; Gort, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-e21149f7727d5205343db0b1c4c1a092b3f3fb7768bdb5548e46e3d3eee0ed6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Accuracy</topic><topic>Assessments</topic><topic>Bradley-Terry (BT) model</topic><topic>Earth</topic><topic>estimates of parameters</topic><topic>Maximum likelihood estimation</topic><topic>measures of association</topic><topic>Multispectral imaging</topic><topic>Parameter estimation</topic><topic>Pixel</topic><topic>Pixels</topic><topic>Radiometry</topic><topic>Reflection</topic><topic>Remote sensing</topic><topic>Statistics</topic><topic>Testing</topic><topic>Thermal emission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stein, A.</creatorcontrib><creatorcontrib>Aryal, J.</creatorcontrib><creatorcontrib>Gort, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stein, A.</au><au>Aryal, J.</au><au>Gort, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of the Bradley-Terry model to quantify association in remotely sensed images</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2005-04-01</date><risdate>2005</risdate><volume>43</volume><issue>4</issue><spage>852</spage><epage>856</epage><pages>852-856</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Thematic maps prepared from remotely sensed images require a statistical accuracy assessment. For this purpose, the /spl kappa/-statistic is often used. This statistic does not distinguish between whether one unit is classified as another, or vice versa. In this paper, the Bradley-Terry (BT) model is applied for accuracy assessment. This model compares categories pairwise. The probability of one class over another class is estimated as well as the expected values of class pixels. The study is illustrated with an Advanced Spaceborne Thermal Emission and Reflection Radiometer image from the Netherlands, to which a maximum-likelihood classification with the Euclidean distance is applied. An error matrix is generated using an IKONOS image from the same area as ground truth. It is shown to which degree the BT model extends the /spl kappa/-statistic. A comparison with the Mahalanobis distance is made. Standardization is carried out to overcome problems emerging from the fact that a common BT model does not include the number of correctly classified pixels. The study shows how the BT model serves as an alternative to the usual /spl kappa/-statistic.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2005.843569</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2005-04, Vol.43 (4), p.852-856 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_miscellaneous_28108044 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Accuracy Assessments Bradley-Terry (BT) model Earth estimates of parameters Maximum likelihood estimation measures of association Multispectral imaging Parameter estimation Pixel Pixels Radiometry Reflection Remote sensing Statistics Testing Thermal emission |
title | Use of the Bradley-Terry model to quantify association in remotely sensed images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T09%3A41%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20the%20Bradley-Terry%20model%20to%20quantify%20association%20in%20remotely%20sensed%20images&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Stein,%20A.&rft.date=2005-04-01&rft.volume=43&rft.issue=4&rft.spage=852&rft.epage=856&rft.pages=852-856&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2005.843569&rft_dat=%3Cproquest_cross%3E28108044%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-e21149f7727d5205343db0b1c4c1a092b3f3fb7768bdb5548e46e3d3eee0ed6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=867640531&rft_id=info:pmid/&rft_ieee_id=1411991&rfr_iscdi=true |