Loading…

Developments in stem cell-derived islet replacement therapy for treating type 1 diabetes

The generation of islet-like endocrine clusters from human pluripotent stem cells (hPSCs) has the potential to provide an unlimited source of insulin-producing β cells for the treatment of diabetes. In order for this cell therapy to become widely adopted, highly functional and well-characterized ste...

Full description

Saved in:
Bibliographic Details
Published in:Cell stem cell 2023-05, Vol.30 (5), p.530-548
Main Authors: Hogrebe, Nathaniel J., Ishahak, Matthew, Millman, Jeffrey R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The generation of islet-like endocrine clusters from human pluripotent stem cells (hPSCs) has the potential to provide an unlimited source of insulin-producing β cells for the treatment of diabetes. In order for this cell therapy to become widely adopted, highly functional and well-characterized stem cell-derived islets (SC-islets) need to be manufactured at scale. Furthermore, successful SC-islet replacement strategies should prevent significant cell loss immediately following transplantation and avoid long-term immune rejection. This review highlights the most recent advances in the generation and characterization of highly functional SC-islets as well as strategies to ensure graft viability and safety after transplantation. Stem cell-derived islets (SC-islets) have the potential to provide an unlimited source of insulin-producing β cells for the treatment of diabetes. Here, we review the most recent developments associated with generating highly functional SC-islets, solving the immune rejection problem, and overcoming practical challenges associated with SC-islet transplantation.
ISSN:1934-5909
1875-9777
DOI:10.1016/j.stem.2023.04.002