Loading…
Empirical bayes approach for dynamic bayesian borrowing for clinical trials in rare diseases
Application of Bayesian methods is one the tools that can be used to face the multiple challenges that are met when clinical trials must be conducted in rare diseases. We propose in this work to use a dynamic Bayesian borrowing approach, based on a mixture prior, to complement the control arm of a c...
Saved in:
Published in: | Journal of pharmacokinetics and pharmacodynamics 2023-12, Vol.50 (6), p.495-499 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c326t-1c4792fde5adf214d963eaf46bc24787832b348628829d0da8f12d9c865f0e8d3 |
container_end_page | 499 |
container_issue | 6 |
container_start_page | 495 |
container_title | Journal of pharmacokinetics and pharmacodynamics |
container_volume | 50 |
creator | Sebastien, Bernard |
description | Application of Bayesian methods is one the tools that can be used to face the multiple challenges that are met when clinical trials must be conducted in rare diseases. We propose in this work to use a dynamic Bayesian borrowing approach, based on a mixture prior, to complement the control arm of a comparative trial and estimate the mixture parameter by an Empirical Bayes approach. The method is compared, using simulations, with an approach based on a pre-specified (non-adaptive) informative prior. The simulation study shows that the proposed method exhibits similar power as the non-adaptive prior and drastically reduce type I error in case of severe discrepancy between the informative prior and the study control arm data. In case of limited discrepancy between the informative prior and the study control arm data, then our proposed adaptive prior does not reduce the inflation of the type I error. |
doi_str_mv | 10.1007/s10928-023-09860-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2810920806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2810920806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-1c4792fde5adf214d963eaf46bc24787832b348628829d0da8f12d9c865f0e8d3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoXqov4EIG3LgZPblMkllKqRcouFFwIYRMkqkpc6lJi_TtTTtVwYWLkJDznXN-PoTOMVxjAHETMZRE5kBoDqXkkMMeOsaFoLkUjO1v3lzk6bweoZMY5wCYFwQO0REVmElWlMfobdIufPBGN1ml1y5merEIvTbvWd2HzK473XozlLzusqoPof_03WxbNo3vtq3L4HUTM99lQQeXWR-dji6eooM6_buz3T1CL3eT5_FDPn26fxzfTnNDCV_m2DBRktq6QtuaYGZLTp2uGa8MYUIKSUlFmeRESlJasFrWmNjSSF7U4KSlI3Q1zE3RP1YuLlXro3FNozvXr6IicmMKJPCEXv5B5_0qdCldosoUJwkSiSIDZUIfY3C1WgTf6rBWGNTGvRrcq-Rebd0rSE0Xu9GrqnX2p-VbdgLoAMRU6mYu_O7-Z-wXmxuPGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893265207</pqid></control><display><type>article</type><title>Empirical bayes approach for dynamic bayesian borrowing for clinical trials in rare diseases</title><source>Springer Link</source><creator>Sebastien, Bernard</creator><creatorcontrib>Sebastien, Bernard</creatorcontrib><description>Application of Bayesian methods is one the tools that can be used to face the multiple challenges that are met when clinical trials must be conducted in rare diseases. We propose in this work to use a dynamic Bayesian borrowing approach, based on a mixture prior, to complement the control arm of a comparative trial and estimate the mixture parameter by an Empirical Bayes approach. The method is compared, using simulations, with an approach based on a pre-specified (non-adaptive) informative prior. The simulation study shows that the proposed method exhibits similar power as the non-adaptive prior and drastically reduce type I error in case of severe discrepancy between the informative prior and the study control arm data. In case of limited discrepancy between the informative prior and the study control arm data, then our proposed adaptive prior does not reduce the inflation of the type I error.</description><identifier>ISSN: 1567-567X</identifier><identifier>EISSN: 1573-8744</identifier><identifier>DOI: 10.1007/s10928-023-09860-0</identifier><identifier>PMID: 37148459</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bayes Theorem ; Bayesian analysis ; Biochemistry ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Clinical trials ; Computer Simulation ; Humans ; Normal distribution ; Original Paper ; Pharmacodynamics ; Pharmacokinetics ; Pharmacology/Toxicology ; Pharmacy ; Rare diseases ; Rare Diseases - drug therapy ; Research Design ; Sample Size ; Veterinary Medicine/Veterinary Science</subject><ispartof>Journal of pharmacokinetics and pharmacodynamics, 2023-12, Vol.50 (6), p.495-499</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-1c4792fde5adf214d963eaf46bc24787832b348628829d0da8f12d9c865f0e8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37148459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sebastien, Bernard</creatorcontrib><title>Empirical bayes approach for dynamic bayesian borrowing for clinical trials in rare diseases</title><title>Journal of pharmacokinetics and pharmacodynamics</title><addtitle>J Pharmacokinet Pharmacodyn</addtitle><addtitle>J Pharmacokinet Pharmacodyn</addtitle><description>Application of Bayesian methods is one the tools that can be used to face the multiple challenges that are met when clinical trials must be conducted in rare diseases. We propose in this work to use a dynamic Bayesian borrowing approach, based on a mixture prior, to complement the control arm of a comparative trial and estimate the mixture parameter by an Empirical Bayes approach. The method is compared, using simulations, with an approach based on a pre-specified (non-adaptive) informative prior. The simulation study shows that the proposed method exhibits similar power as the non-adaptive prior and drastically reduce type I error in case of severe discrepancy between the informative prior and the study control arm data. In case of limited discrepancy between the informative prior and the study control arm data, then our proposed adaptive prior does not reduce the inflation of the type I error.</description><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Clinical trials</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Normal distribution</subject><subject>Original Paper</subject><subject>Pharmacodynamics</subject><subject>Pharmacokinetics</subject><subject>Pharmacology/Toxicology</subject><subject>Pharmacy</subject><subject>Rare diseases</subject><subject>Rare Diseases - drug therapy</subject><subject>Research Design</subject><subject>Sample Size</subject><subject>Veterinary Medicine/Veterinary Science</subject><issn>1567-567X</issn><issn>1573-8744</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoXqov4EIG3LgZPblMkllKqRcouFFwIYRMkqkpc6lJi_TtTTtVwYWLkJDznXN-PoTOMVxjAHETMZRE5kBoDqXkkMMeOsaFoLkUjO1v3lzk6bweoZMY5wCYFwQO0REVmElWlMfobdIufPBGN1ml1y5merEIvTbvWd2HzK473XozlLzusqoPof_03WxbNo3vtq3L4HUTM99lQQeXWR-dji6eooM6_buz3T1CL3eT5_FDPn26fxzfTnNDCV_m2DBRktq6QtuaYGZLTp2uGa8MYUIKSUlFmeRESlJasFrWmNjSSF7U4KSlI3Q1zE3RP1YuLlXro3FNozvXr6IicmMKJPCEXv5B5_0qdCldosoUJwkSiSIDZUIfY3C1WgTf6rBWGNTGvRrcq-Rebd0rSE0Xu9GrqnX2p-VbdgLoAMRU6mYu_O7-Z-wXmxuPGg</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Sebastien, Bernard</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20231201</creationdate><title>Empirical bayes approach for dynamic bayesian borrowing for clinical trials in rare diseases</title><author>Sebastien, Bernard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-1c4792fde5adf214d963eaf46bc24787832b348628829d0da8f12d9c865f0e8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Clinical trials</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Normal distribution</topic><topic>Original Paper</topic><topic>Pharmacodynamics</topic><topic>Pharmacokinetics</topic><topic>Pharmacology/Toxicology</topic><topic>Pharmacy</topic><topic>Rare diseases</topic><topic>Rare Diseases - drug therapy</topic><topic>Research Design</topic><topic>Sample Size</topic><topic>Veterinary Medicine/Veterinary Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sebastien, Bernard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of pharmacokinetics and pharmacodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sebastien, Bernard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical bayes approach for dynamic bayesian borrowing for clinical trials in rare diseases</atitle><jtitle>Journal of pharmacokinetics and pharmacodynamics</jtitle><stitle>J Pharmacokinet Pharmacodyn</stitle><addtitle>J Pharmacokinet Pharmacodyn</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>50</volume><issue>6</issue><spage>495</spage><epage>499</epage><pages>495-499</pages><issn>1567-567X</issn><eissn>1573-8744</eissn><abstract>Application of Bayesian methods is one the tools that can be used to face the multiple challenges that are met when clinical trials must be conducted in rare diseases. We propose in this work to use a dynamic Bayesian borrowing approach, based on a mixture prior, to complement the control arm of a comparative trial and estimate the mixture parameter by an Empirical Bayes approach. The method is compared, using simulations, with an approach based on a pre-specified (non-adaptive) informative prior. The simulation study shows that the proposed method exhibits similar power as the non-adaptive prior and drastically reduce type I error in case of severe discrepancy between the informative prior and the study control arm data. In case of limited discrepancy between the informative prior and the study control arm data, then our proposed adaptive prior does not reduce the inflation of the type I error.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>37148459</pmid><doi>10.1007/s10928-023-09860-0</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1567-567X |
ispartof | Journal of pharmacokinetics and pharmacodynamics, 2023-12, Vol.50 (6), p.495-499 |
issn | 1567-567X 1573-8744 |
language | eng |
recordid | cdi_proquest_miscellaneous_2810920806 |
source | Springer Link |
subjects | Bayes Theorem Bayesian analysis Biochemistry Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Clinical trials Computer Simulation Humans Normal distribution Original Paper Pharmacodynamics Pharmacokinetics Pharmacology/Toxicology Pharmacy Rare diseases Rare Diseases - drug therapy Research Design Sample Size Veterinary Medicine/Veterinary Science |
title | Empirical bayes approach for dynamic bayesian borrowing for clinical trials in rare diseases |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A30%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20bayes%20approach%20for%20dynamic%20bayesian%20borrowing%20for%20clinical%20trials%20in%20rare%20diseases&rft.jtitle=Journal%20of%20pharmacokinetics%20and%20pharmacodynamics&rft.au=Sebastien,%20Bernard&rft.date=2023-12-01&rft.volume=50&rft.issue=6&rft.spage=495&rft.epage=499&rft.pages=495-499&rft.issn=1567-567X&rft.eissn=1573-8744&rft_id=info:doi/10.1007/s10928-023-09860-0&rft_dat=%3Cproquest_cross%3E2810920806%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-1c4792fde5adf214d963eaf46bc24787832b348628829d0da8f12d9c865f0e8d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2893265207&rft_id=info:pmid/37148459&rfr_iscdi=true |