Loading…

Sensitivity of ice storms in the southeastern United States to atlantic SST-insights from a case study of the december 2002 storm

Meteorological observations and model simulations are used to show that the catastrophic ice storm of 4–5 December 2002 in the southeastern United States resulted from the combination of a classic winter storm and a warm sea surface temperature (SST) anomaly in the western Atlantic Ocean. At the tim...

Full description

Saved in:
Bibliographic Details
Published in:Monthly weather review 2006-05, Vol.134 (5), p.1454-1464
Main Authors: DA SILVA, Renato Ramos, BOHRER, Gil, WERTH, David, OTTE, Martin J, AVISSAR, Roni
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Meteorological observations and model simulations are used to show that the catastrophic ice storm of 4–5 December 2002 in the southeastern United States resulted from the combination of a classic winter storm and a warm sea surface temperature (SST) anomaly in the western Atlantic Ocean. At the time of the storm, observations show that the Atlantic SST near the southeastern U.S. coast was 1.0°–1.5°C warmer than its multiyear mean. The impact of this anomalous SST on the ice accumulation of the ice storm was evaluated with the Regional Atmospheric Modeling System. The model shows that a warmer ocean leads to the conversion of more snow into freezing rain while not significantly affecting the inland surface temperature. Conversely, a cooler ocean produces mostly snowfall and less freezing rain. A similar trend is obtained by statistically comparing observations of ice storms in the last decade with weekly mean Atlantic SSTs. The SST during an ice storm is significantly and positively correlated with a deeper and warmer melting layer.
ISSN:0027-0644
1520-0493
DOI:10.1175/MWR3127.1